A Random Forest-Based Predictive Model for Student Academic Performance: A Case Study in Indonesian Public High Schools
DOI:
https://doi.org/10.30871/jaic.v9i3.9460Keywords:
Achievement Accuracy, Entropy, Education, PredictionAbstract
The rapid advancement of information technology has transformed education by providing tools to accurately predict students' academic performance. This study aims to develop a system for predicting academic achievement using the Random Forest algorithm, with a case study at SMAN 1 Aceh Barat Daya and SMAN 3 Aceh Barat Daya. Data from 632 student report cards for grades X and XI in the second semester of the 2023/2024 academic year were used, covering subjects such as Mathematics, Indonesian Language, and others, divided into 80% training data (506 samples) and 20% test data (136 samples). The research methodology involved data preprocessing, training the Random Forest model using entropy and information gain to construct decision trees, and performance evaluation using metrics such as accuracy, precision, and recall. The implementation resulted in a web-based application using Python and Flask, featuring an interactive interface and decision tree visualization. Testing on 136 test samples achieved an accuracy of 87.40%, with 111 correct predictions, 16 false positives, and 0 false negatives, demonstrating the model's reliability in identifying high-achieving students without missing potential. This research is expected to assist schools in identifying outstanding students, making data-driven decisions, and designing more effective educational strategies.
Downloads
References
[1] S. Ujud, T. D. Nur, Y. Yusuf, N. Saibi, and M. R. Ramli, “Penerapan Model Pembelajaran Discovery Learning Untuk Meningkatkan Hasil Belajar Siswa Sma Negeri 10 Kota Ternate Kelas X Pada Materi Pencemaran Lingkungan,” J. Bioedukasi, vol. 6, no. 2, pp. 337–347, 2023, doi: 10.33387/bioedu.v6i2.7305.
[2] W. Delfiana, “Pemanfaatan Perpustakaan Sekolah Oleh Guru Di SMA Negeri 1 Aceh Barat Daya,” 2022.
[3] F. Mu’Alim and R. Hiday, “Implementasi Metode Random Forest Untuk Penjurusan Siswa Di Madrasah Aliyah Negeri Sintang,” Jupiter, vol. 14, no. 1. pp. 116–125, 2022. [Online]. Available: https://www.neliti.com/publications/441871/implementasi-metode-random-forest-untuk-penjurusan-siswa-di-madrasah-aliyah-nege#cite
[4] G. A. Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” CogITo Smart J., vol. 6, no. 2, pp. 167–178, 2020, doi: 10.31154/cogito.v6i2.270.167-178.
[5] J. Nasir, “Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 2, pp. 690–703, 2021, doi: 10.24176/simet.v11i2.5482.
[6] A. Primajaya and B. N. Sari, “Random Forest Algorithm for Prediction of Precipitation,” Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, p. 27, 2018, doi: 10.24014/ijaidm.v1i1.4903.
[7] Warjiyono, A. Nur Rais, I. Alfarobi, S. Wira Hadi, and W. Kurniawan, “Analisa Prediksi Harga Jual Rumah Menggunakan Algoritma Random Forest Machine Learning,” JURSISTEKNI (Jurnal Sist. Inf. dan Teknol. Informasi), vol. 6, no. 2, pp. 416–423, 2024.
[8] S. Adiguno, Y. Syahra, and M. Yetri, “Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 4, p. 275, 2022, doi: 10.53513/jursi.v1i4.5331.
[9] W. A. P. Wanto Anjar, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan MWanto, A. (2019). Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation. Jurnal & Penelitian Teknik Infor,” J. Penelit. Tek. Inform., vol. 2, no. 2, pp. 37–44, 2017.
[10] A. Matondang, “Pengaruh Antara Minat Dan Motivasi Dengan Prestasi Belajar,” J. Pendidik. Bhs. dan Sastra Indones., vol. 2, no. 2, pp. 24–32, 2018, doi: https://doi.org/10.30743/bahastra.v2i2.1215.
[11] A. Maritsa, U. Hanifah Salsabila, M. Wafiq, P. Rahma Anindya, and M. Azhar Ma’shum, “Pengaruh Teknologi Dalam Dunia Pendidikan,” Al-Mutharahah J. Penelit. dan Kaji. Sos. Keagamaan, vol. 18, no. 2, pp. 91–100, 2021, doi: 10.46781/al-mutharahah.v18i2.303.
[12] I. Sekolah, “Data Pokok Pendidikan ( DAPODIK ) SMA NEGERI 1 ACEH BARAT DAYA,” pp. 24–26, 2025.
[13] W. Delfiana, “Pemanfaatan Perpustakaan Sekolah Oleh Guru Di SMA Negeri 1 Aceh Barat Daya,” 2022, [Online]. Available: https://repository.ar-raniry.ac.id/id/eprint/20495/%0Ahttps://repository.ar-raniry.ac.id/id/eprint/20495/1/Winda Delfiana%2C 160503004%2C FAH%2C IP.pdf
[14] B. Yogyakarta, “ようこそ ! Selamat Datang !,” vol. 0022, no. April, p. 2024, 2009.
[15] Y. Ulfa, “Penerapan model pembelajaran Teams Games Tournament (TGT) terhadap kemampuan pemahaman konsep siswa di SMA Negeri 3 ABDYA,” pp. 97–98, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rifa Andriani Saputri, Asrianda Asrianda, Lidya Rosnita

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








