Sentiment Analysis of Trending Topics on Social Media X Using Natural Language Processing and LSTM

Authors

  • Rasmila Rasmila Universitas Bina Darma
  • Yosandra Saputri Teknik Informatika, Falkultas Sais Teknologi, Universitas Bina Darma
  • Firamon Syaki Universitas Bina Darma
  • Novri Hadinata Universitas Bina Darma

DOI:

https://doi.org/10.30871/jaic.v9i6.10931

Keywords:

Sentiment Analysis, NLP, LSTM, Social Media X, Trending Topic

Abstract

In today’s fast-paced digital era, trending news on Social Media X spreads rapidly, influences public opinion, and is often vulnerable to disinformation. This study analyzes netizens’ sentiment towards trending topics on Social Media X using Natural Language Processing (NLP) and a Long Short-Term Memory (LSTM) model. A dataset of 4483 comments was collected across 15 trending topics (Feb–Jun 2025). The preprocessing steps included cleansing, case folding, stopword removal, tokenization, and translation to handle bilingual data. Results show sentiment distribution: 35% positive, 36% negative, and 29% neutral. Model performance varied between 34%–67% accuracy, with precision, recall, and F1-scores indicating that topic sensitivity, language diversity, and data imbalance strongly influenced outcomes. This research contributes to text analytics by providing a baseline model for real-time trending news sentiment analysis in Indonesia, particularly under multilingual and noisy data conditions.

Downloads

Download data is not yet available.

References

[1] D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 10, no. 1, Jan. 2022, doi: 10.23960/jitet.v10i1.2262.

[2] A. Tirtayasa, A. Listiyo Wibowo, P. DI Jl Panjaitan No, K. Purwokerto Selatan, K. Banyumas, and J. Tengah, “Sentiment Analysis Tweet KTT G-20 di Media Sosial Twitter Menggunakan Metode Naïve Bayes,” 2023. [Online]. Available: https://developer.twitter.com/

[3] T. C. Adisti, E. Daniati, and A. Ristiyawan, “Analisis Sentimen Ujaran Kebencian Pada Tweet Di Twitter,” 2025.

[4] G. Mario Conroy Paridy Man, A. Aristo Jansen Sinlae, and E. Ngaga, “JIP (Jurnal Informatika Polinema) Analisis Sentimen di Media Sosial X tentang IKN dengan Naïve Bayes”.

[5] M. Hamzah, “Penerapan Natural Language Processing (NLP) dalam Analisis Sentimen pada Media Sosial,” Journal of Informatics and Computer Research (JICR), vol. xx, No. xx, 2024, doi: 10.1007/s41060-018-0111-1.

[6] W. Anggriyani and M. Fakhriza, “Analisis Sentimen Program Makan Gratis Pada Media Sosial X Menggunakan Metode NLP,” Journal of Computer System and Informatics (JoSYC), vol. 5, no. 4, pp. 1033–1042, Aug. 2024, doi: 10.47065/josyc.v5i4.5826.

[7] M. Wildan Agba, P. Eosina, and D. Primasari, “Memanfaatkan Analisis Sentimen Twitter untuk Mengelola Reputasi Merek: Studi Kasus Skincare Merek X Menggunakan Support Vector Machine”, doi: 10.38035/jim.v4i3.

[8] T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 4, 2022, [Online]. Available: http://jurnal.mdp.ac.id

[9] N. Suarna and W. Prihartono, “Penerapan NLP (Natural Language Processing) Dalam Analisis Sentimen Pengguna Telegram Di Playstore,” 2024.

[10] L. M. Azizah, D. B. Ajipratama, N. A. R. Putri, and C. Damarjati, “Analisa Sentimen Masyarakat Terhadap Kebijakan Vaksinasi Covid-19 Di Indonesia Pada Twitter Menggunakan Algoritma LSTM La,” JURNAL IPTEKKOM Jurnal Ilmu Pengetahuan & Teknologi Informasi, vol. 24, no. 2, pp. 161–172, Dec. 2022, doi: 10.17933/iptekkom.24.2.2022.161-172.

[11] S. Fathoniah and C. Rozikin, “Analisis Sentimen Masyarakat terhadap Teroris dalam Media Sosial Twitter menggunakan NLP,” Jurnal Ilmiah Wahana Pendidikan, vol. 2022, no. 13, pp. 412–419, doi: 10.5281/zenodo.6962682.

[12] R. Luthfiansyah Dan, B. Wasito, S. Program, and I. Sistem, “Analisis Sentimen Terhadap Para Kandidat Presiden 2024 Berdasarkan Netizen Pengguna Twitter Dengan Metode Data Mining Dan Text Mining.”

[13] A. Berrajaa, “Natural Language Processing for the Analysis Sentiment using a LSTM Model.” [Online]. Available: www.ijacsa.thesai.org

[14] A. Mukti, A. D. Hadiyanti, A. Nurlaela, and J. Panjaitan, “Sistem Analisa Sentiment Bakal Calon Presiden 2024 Menggunakan Metode NLP Berbasis Web The Sentiment Analysis System For the 2024 Presidential Candidates Uses Web-Based NLP Method,” 2023.

[15] J. R. Jim, M. A. R. Talukder, P. Malakar, M. M. Kabir, K. Nur, and M. F. Mridha, “Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review,” Natural Language Processing Journal, vol. 6, p. 100059, Mar. 2024, doi: 10.1016/j.nlp.2024.100059.

[16] D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 10, no. 1, Jan. 2022, doi: 10.23960/jitet.v10i1.2262.

[17] A. Rolangon et al., “Perbandingan Algoritma LSTM Untuk Analisis Sentimen Pengguna Twitter Terhadap Layanan Rumah Sakit Saat Pandemi Covid-19 The Comparison of LSTM Algorithms for Twitter User Sentiment Analysis on Hospital Services During the Covid-19 Pandemic.”

[18] M. Puspa Indah et al., “Analisis Jaringan Informasi Dalam Natural Language Processing Terhadap Situs Cnn Indonesia Menggunakan Graphgpt (Studi Kasus: Berita Hasil Pilpres 2024) Program Studi Sistem Informasi Fakultas Sains Teknologi Universitas Bina Darma Palembang),” 2024.

[19] F. Fakhri Irfani and M. Triyanto, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine.”

[20] M. I. Fikri, T. S. Sabrila, Y. Azhar, and U. M. Malang, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter”.

Downloads

Published

2025-12-05

How to Cite

[1]
R. Rasmila, Y. Saputri, F. Syaki, and N. Hadinata, “Sentiment Analysis of Trending Topics on Social Media X Using Natural Language Processing and LSTM”, JAIC, vol. 9, no. 6, pp. 3034–3041, Dec. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.