Implementation of Information Gain for Sentiment Analysis of PSE Policy using Naïve Bayes Algorithm

  • Stevanus Ertito Pramudja Universitas Singaperbangsa Karawang
  • Yuyun Umaidah Universitas Singaperbangsa Karawang
  • Aries Suharso Universitas Singaperbangsa Karawang
Keywords: PSE Kominfo, Naïve Bayes Classifier, Information Gain, Confusion Matrix

Abstract

The Ministry of Communication and Information Technology of Indonesia (Kominfo) has established the Penyelenggara Sistem Elektronik (PSE) policy as a mandatory registration requirement for both domestic and foreign Electronic Systems (ES). As a result, Kominfo will impose sanctions on all ES by temporarily suspending their access if they fail to register by July 29, 2022, at 23:59 WIB. This policy has sparked both support and opposition among the Indonesian public, and it has become a topic of discussion, including among Twitter users. Therefore, sentiment analysis is employed as a solution to identify public concerns or issues regarding the policy based on negative and positive tweets. The objective of this research is to evaluate the results of feature selection using Information Gain and the Naïve Bayes Classifier algorithm in analyzing Twitter users' sentiment towards the policies of the Information and PSE of the Ministry of Communication and Information Technology. A total of 1153 lines of tweets were collected from the Twitter platform using the keyword "PSE Kominfo," which were then analyzed using the Naïve Bayes Classifier algorithm and Information Gain feature selection with three scenarios: 90:10, 80:20, and 70:30. Based on the evaluation using the confusion matrix, overall, Scenario 1 with a 90:10 ratio and Information Gain feature selection performed the best, achieving an accuracy of 79.7%, recall of 85%, and an F-1 score of 88%. However, the best precision was observed in Scenario 2 with an 80:20 ratio, reaching 92% due to the higher proportion of positive predictions made by the model compared to other scenarios.

Downloads

Download data is not yet available.

References

Kominfo, “Peraturan Menteri Komunikasi dan Informatika Nomor 5 Tahun 2020 tentang Penyelenggara Sistem Elektronik Lingkup Privat,” https://pse.kominfo.go.id/, Jul. 22, 2022. .

C. Rahmawati and P. Sukmasetya, “Sentimen Analisis Opini Masyarakat Terhadap Kebijakan Kominfo atas Pemblokiran Situs non-PSE pada Media Sosial Twitter,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1393, Oct. 2022, doi: 10.30865/jurikom.v9i5.4950.

CNN Indonesia, “Analisis PSE Kominfo Buat Kepentingan Siapa?,” https://www.cnnindonesia.com/teknologi/20220804012642-192-830038/pse-kominfo-buat-kepentingan-siapa, Aug. 04, 2022. .

O. Y. Adwan, M. Al-Tawil, A. M. Huneiti, R. A. Shahin, A. A. Abu Zayed, and R. H. Al-Dibsi, “Twitter sentiment analysis approaches: A survey,” Int. J. Emerg. Technol. Learn., vol. 15, no. 15, pp. 79–93, 2020, doi: 10.3991/ijet.v15i15.14467.

I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, A. Mulyani, and J. I. Komputer, “Comparison Of Classification Algorithm And Feature Selection In Bitcoin Sentiment Analysis,” J. Tek. Inform., vol. 3, no. 3, 2022, doi: 10.20884/1.jutif.2022.3.3.343.

A. Isnanda, Y. Umaidah, and J. H. Jaman, “Implementasi Naïve Bayes Classifier Dan Information Gain Pada Analisis Sentimen Penggunaan E-Wallet Saat Pandemi,” J. Teknol. Inform. dan Komput., vol. 7, no. 2, pp. 144–153, Sep. 2021, doi: 10.37012/jtik.v7i2.648.

A. Bijaksana, P. Negara, H. Muhardi, and I. M. Putri, “Analisis Sentimen Maskapai Penerbangan Menggunakan Metode Naive Bayes Dan Seleksi Fitur Information Gain Sentiment Analysis On Airlines Using Naïve Bayes Method And Feature Selection Information Gain,” vol. 7, no. 3, pp. 599–606, 2020, doi: 10.25126/jtiik.202071947.

F. Nasser K, “A Review of Data Mining and Knowledge Discovery Approaches for Bioinformatics,” Iraqi J. Sci., vol. 63, 2022, Accessed: Aug. 21, 2023. [Online]. Available: 10.24996/ijs.2022.63.7.37.

I. A. Ahmad Sabri, M. Man, W. A. W. Abu Bakar, and A. N. Mohd Rose, “Web Data Extraction Approach for Deep Web using WEIDJ,” in Procedia Computer Science, 2019, vol. 163, pp. 417–426, doi: 10.1016/j.procs.2019.12.124.

W. Zhang, X. Li, Y. Deng, L. Bing, and W. Lam, “A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges,” Mar. 2022, [Online]. Available: http://arxiv.org/abs/2203.01054.

B. Al Hadits, “Analisis Sentimen Kepuasan Pelanggan Indihome Pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Classifiers Proposal Skripsi,” 2020.

C. Barrie and J. Ho, “academictwitteR: an R package to access the Twitter Academic Research Product Track v2 API endpoint,” J. Open Source Softw., vol. 6, no. 62, p. 3272, Jun. 2021, doi: 10.21105/joss.03272.

Jurafsky, Daniel, & Martin, James H. 2019. Speech and Language Processing. Pearson.

Y. Zhou, G. Cheng, S. Jiang, and M. Dai, “Building an Efficient Intrusion Detection System Based on Feature Selection and Ensemble Classifier,” Apr. 2019, doi: 10.1016/j.comnet.2020.107247

S. Chen, G. I. Webb, L. Liu, and X. Ma, “A novel selective naïve Bayes algorithm,” Knowl Based Syst, vol. 192, Mar. 2020, doi: 10.1016/j.knosys.2019.105361.

Provost, F., & Fawcett, T. (2013). Data Science and Its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1, 51-59

A. S. Ramadhani, “Analisis Sentimen Netizen Terhadap Trailer Film di YouTube SKRIPSI,” 2020.

Published
2023-11-30
How to Cite
[1]
S. Pramudja, Y. Umaidah, and A. Suharso, “Implementation of Information Gain for Sentiment Analysis of PSE Policy using Naïve Bayes Algorithm”, JAIC, vol. 7, no. 2, pp. 224–230, Nov. 2023.
Section
Articles

Most read articles by the same author(s)