Klasifikasi Nilai Kepuasan Masyarakat Terhadap Pelayanan E-KTP Menggunakan Algoritma C4.5 (Studi Kasus : Kantor Kecamatan Rengasdengklok )

  • Amelia Pratiwi Universitas Singaperbangsa Karawang
  • Aries Suharso Universitas Singaperbangsa Karawang
  • Hannie Hannie Universitas Singaperbangsa Karawang
Keywords: Klasifikasi, E-KTP, Data mining, C4.5

Abstract

The e-KTP service is very important for the community as an identification or identity card for Indonesian citizens. So it is necessary to do this research to find out the value of community satisfaction with e-KTP services, so that later it becomes a reference for e-KTP operators to be even better. Data on the value of community satisfaction At the Rengasdengklok District office, there is a lot of data. This study aims to classify the value of community satisfaction with e-KTP services using. The method used is KDD (Knowledge Discovery in Database) classification by going through the process of data selection, preprocessing, transformation, data mining and evaluation. The algorithm used in this study is the C4.5 algorithm, which is the result of the classification process in the form of rules that can be used to predict the value of the discrete type attribute of a new record. In evaluating the performance of the C4.5 algorithm in the classification of the value of community satisfaction with e-KTP services using Rapidminer tools. Evaluation of the model using kappa. Then it was obtained that the accuracy value was 94.67%. With a kappa value of 0.914% that has been obtained, it falls into the range of values ​​from 0.81 to 1.00, the results of this study have a value of the level of satisfaction with the e-KTP service in the very strong classification category.

Downloads

Download data is not yet available.

References

C. A. Sugianto and T. H. Apandi, “Algoritma Genetika untuk Optimalisasi Klasifikasi Kepuasan Pelayanan e-KTP,” vol. 3, 2019, doi: 10.31227/osf.io/guryd.

Disdukcatpil, “DATA AGREGAT KEPENDUDUKAN PER-KECAMATAN (DAK2) SEMESTER 1 TAHUN 2020,” pp. 1–37, 2020.

S. Kasus and S. Pringsewu, “Analisis Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan Metode Algoritma C4.5 (Studi Kasus: Stmik Pringsewu),” J. Teknol. Inf. Magister Darmajaya, vol. 2, no. 01, pp. 1–11, 2016.

M. Utami and Y. Apridiansyah, “Implementasi Algoritma Sequential Searching Pada Sistem Pelayanan Puskesmas Menggunakan Bootstrap (Studi Kasus Puskesmas Kampung Bali Bengkulu),” JSAI (Journal Sci. Appl. Informatics), vol. 2, no. 1, pp. 81–86, 2019, doi: 10.36085/jsai.v2i1.166.

E. N. Wahyudi, “Teknik Klasifikasi untuk Melihat Kecenderungan Calon Mahasiswa Baru dalam Memilih Jenjang Pendidikan Program Studi di Perguruan Tinggi,” vol. 18, no. 1, pp. 55–64, 2013.

D. Ardiansyah, “Algoritma C4.5 Untuk Klasifikasi Calon Peserta Lomba Cerdas Cermat Siswa Smp Dengan Menggunakan Aplikasi Rapid Miner,” J. Inkofar, vol. 1, no. 2, pp. 5–12, 2019, doi: 10.46846/jurnalinkofar.v1i2.29.

A. Prasatya, R. R. A. Siregar, and R. Arianto, “Penerapan Metode K-Means Dan C4.5 Untuk Prediksi Penderita Diabetes,” Petir, vol. 13, no. 1, pp. 86–100, 2020, doi: 10.33322/petir.v13i1.925.

M. Yusa, E. Utami, and E. T. Luthfi, “Analisis Komparatif Evaluasi Performa Algoritma Klasifikasi pada Readmisi Pasien Diabetes,” J. Buana Inform., vol. 7, no. 4, pp. 293–302, 2016, doi: 10.24002/jbi.v7i4.770.

D. Altman, “No Title,” Pract. Stat. Med. Res., 1991.

D. Sartika and D. Indra, “Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian,” J. Tek. Inform. Dan Sist. Inf., vol. 1, no. 2, pp. 151–161, 2017.

Published
2021-12-16
How to Cite
[1]
A. Pratiwi, A. Suharso, and H. Hannie, “Klasifikasi Nilai Kepuasan Masyarakat Terhadap Pelayanan E-KTP Menggunakan Algoritma C4.5 (Studi Kasus : Kantor Kecamatan Rengasdengklok )”, JAIC, vol. 5, no. 2, pp. 182-189, Dec. 2021.
Section
Articles