Sentiment Analysis on Fuel Purchase Policy Through MyPertamina Application Using NB and SVM Methods Optimized by PSO as Weight Optimation

  • Rousyati Rousyati Universitas Bina Sarana Informatika
  • Dany Pratmanto Universitas Bina Sarana Informatika
  • Angga Ardiansyah Universitas Bina Sarana Informatika
  • Sopian Aji Universitas Bina Sarana Informatika
Keywords: Sentiment analysis, MyPertamina, Naïve Bayes, Particle Swarm Optimization

Abstract

Sentiment analysis on the MyPertamina application can serve as a means to extract customer opinions about the application. This method involves collecting reviews from users who have utilized the MyPertamina application and classifying these reviews as positive or negative using sentiment analysis algorithms. After the reviews are classified, themes discussed in positive and negative reviews can be extracted, such as ease of use, payment speed, or technical issues. This provides a general overview of user expectations for the MyPertamina application and areas that may need improvement. Sentiment analysis of MyPertamina application comments using Naïve Bayes (NB) and Support Vector Machine (SVM) methods is a process to evaluate whether user comments on the MyPertamina application are positive or negative. NB and SVM are machine learning methods used to predict the category of an input based on given training data. In this study, user comments on the MyPertamina application are used as input and classified as positive, negative, or neutral based on previous training data. The goal of this sentiment analysis is to understand user perceptions of the MyPertamina application and enhance its quality. The research concludes that the implementation of data mining can assist in categorizing sentiments of MyPertamina reviews. The NB algorithm with the addition of Particle Swarm Optimization (PSO) proves to be the most effective method in this study compared to NB alone, SVM, and SVM + PSO. The NB algorithm with PSO optimization yields an accuracy of 79.49%, the highest precision of 79.57%, recall of 79.38%, and the highest AUC of 95.30%, falling into the category of excellent classification.

Downloads

Download data is not yet available.

References

G. Salsabila, S. Promosi, L. Program, and M. Pertamina, “Gina Salsabila: Strategi Promosi Loyalty Program My Pertamina.....,” J. Visi Komun., vol. 17, no. 01, pp. 23–44, 2018.

A. Lutfi, “Efekvitas Penggunaan Aplikasi My Pertamina Di Era Kenaikan Bbm Bersubsidi,” Pros. Semin. Nas. Pendidikan, Bahasa, Sastra, Seni, dan Budaya, vol. 1, no. 2, pp. 244–253, 2022, [Online]. Available: http://badanpenerbit.org/index.php/MATEANDRAU/article/view/189.

M. Lailiyah, “Sentiment Analysis Menggunakan Rule Based Method Pada Data Pengaduan Publik Berbasis Lexical Resources,” 2017, [Online]. Available: http://repository.its.ac.id/42409/.

F. Alvianda and P. P. Adikara, “Analisis Sentimen Konten Radikal Di Media Sosial Twitter Menggunakan Metode Support Vector Machine ( SVM ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 3, no. 1, pp. 241–246, 2019.

N. Faridhotul Hidayah, K. Paranita Kartika R., and S. Nur Budiman, “Penerapan Metode Naive Bayes Dalam Analisis Sentimen Aplikasi Sentuh Tanahku Pada Google Play,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 679–683, 2022, doi: 10.36040/jati.v6i2.5610.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.

B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 4, no. 2, p. 113, 2018, doi: 10.26418/jp.v4i2.27526.

D. Tuah Fitriano Putra, “Kapabilitas Dynamic Governance Dalam Pencapaian Pertumbuhan Ekonomi Provinsi Kepulauan Riau Tahun 2012 – 2017,” KEMUDI J. Ilmu Pemerintah., vol. 4, no. 2, pp. 144–176, 2020, doi: 10.31629/kemudi.v4i2.1460.

U. Kusnia and F. Kurniawan, “Analisis Sentimen Review Aplikasi Media Berita OnlinePada Google Playmenggunakan Metode Algoritma Support Vector Machines (SVM) Dan Naive Bayes,” Explor. IT, vol. 14, no. 36, pp. 24–28, 2022, [Online]. Available: https://jurnal.yudharta.ac.id/v2/index.php/EXPLORE-IT/article/view/3116/2133.

O. Irnawati and K. Solecha, “Analisis Sentimen Ulasan Aplikasi Flip Menggunakan Naïve Bayes dengan Seleksi Fitur PSO,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 02, pp. 189–199, 2022, [Online]. Available: http://jurnal.umus.ac.id/index.php/intech/article/view/868/538.

S. A. Aaputra, Didi Rosiyadi, Windu Gata, and Syepry Maulana Husain, “Sentiment Analysis Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma Naive Bayes Berbasis Particle Swarm Optimization,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 377–382, 2019, doi: 10.29207/resti.v3i3.1118.

D. Kurniawan and M. Yasir, “Optimization Sentimen Analysis using CRISP-DM and Naive Bayes Methods Implemented on Social Media,” Cybersp. J. Pendidik. Teknol. Inf., vol. 6, no. 2, p. 74, 2022, doi: 10.22373/cj.v6i2.12793.

A. T. J. H, “Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining,” pp. 1–9.

Surohman, S. Aji, Rousyati, and F. F. Wati, “Analisa Sentimen Terhadap Review Fintech Dengan Metode Naive Bayes,” Evolusi J. Sains dan Manaj., vol. 8, no. 1, pp. 93–105, 2020, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/7535/4065.

M. S. Utomo, “Stopword Dinamis dengan Pendekatan Statistik,” J. Inform. Upgris, pp. 140–148, 2015.

Published
2023-12-05
How to Cite
[1]
R. Rousyati, D. Pratmanto, A. Ardiansyah, and S. Aji, “Sentiment Analysis on Fuel Purchase Policy Through MyPertamina Application Using NB and SVM Methods Optimized by PSO as Weight Optimation”, JAIC, vol. 7, no. 2, pp. 240-245, Dec. 2023.
Section
Articles