Implementation of Collaborative Filtering in the Salted Fish Recommendation Process

Authors

  • Moh Taufiq Rizky Universitas Tadulako
  • Rinianty Rinianty Universitas Tadulako
  • Deny Wiria Nugraha Universitas Tadulako
  • Amriana Amriana Universitas Tadulako
  • Nouval Trezandy Lapatta Universitas Tadulako

DOI:

https://doi.org/10.30871/jaic.v9i6.11576

Keywords:

Collaborative Filtering, E-Commerce , Sales Recommendation, Website

Abstract

The development of e-commerce in the current era has been so rapid that buying and selling transactions are carried out online through various media, including websites and applications. With so many products available in the application, users often feel confused when choosing the product they want to buy, so it takes a long time to choose a product to avoid regret after purchasing it. In this study, a web-based recommendation system was created for the process of recommending salted fish with the aim of making it easier for customers to choose the type of salted fish. The Collaborative Filtering method was used, employing Pearson Correlation as a tool to calculate the similarity value between users, then using Weighted Sum to calculate the prediction value. Collaborative Filtering often experiences the cold start problem, where the system has difficulty providing recommendations to users who do not yet have a transaction history. Therefore, the author proposes a popularity-based strategy as a measure to overcome this problem. Based on testing, the author obtained results of MAE = 0.63 and RMSE = 0.81 based on train-test split results with a data distribution of 80:20, 80% of the dataset for training and 20% of the dataset for testing with an accuracy of 70-80%, indicating that this system works well. This system has been tested using the Blackbox method.

Downloads

Download data is not yet available.

References

[1] Aisha, Dita, and Ririen Kusumawati. "Implementasi metode algoritma collaborative filtering & k-nearest neighbor pada sistem rekomendasi e-commerce." Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer 2.3 (2022): 25-38.

[2] Xu, Guandong, Yanchun Zhang, and Lin Li. Web mining and social networking: techniques and applications. Vol. 6. Springer Science & Business Media, 2010.

[3] Laksana, Eka Angga. "Collaborative Filtering dan Aplikasinya." Jurnal Ilmiah Teknologi Infomasi Terapan 1.1 (2014).

[4] Yoshua I., Bunyamin H., Si S. (2021). Pengimplementasian Sistem Rekomendasi Musik Dengan Metode Collaborative Filtering. Jurnal strategi.

[5] Rounak Banik, Hands-On Recommendation Systems with Python, 1st ed., Pravin Dhadre, Ed. Brimingham, England: Packt Publishing, 2018.J. S.

[6] Breese, John S., David Heckerman, and Carl Kadie. "Empirical analysis of predictive algorithms for collaborative filtering." arXiv preprint arXiv:1301.7363 (2013).

[7] Nugroho F., Ismu Rahayu M. (2020). Sistem Rekomendasi Produk UKM Di Kota Bandung Menggunakan Algoritma Collaborative Filtering. Jurnal Riset Sistem Informasi dan Teknologi Informasi (JURSISTENI), 10.52005/jursistekni.v2i3.63.

[8] Nurhani F., Samsudin. (2022). Implementasi Algoritma Collaborative Filtering pada Sistem Pemesanan Makanan dan Minuman dengan platform Android. Jurnal Ilmiah Komputasi, 10.32409/jikstik.21.3.3110

[9] Uyun, Shofwatul, Imam Fahrurrozi, and Agus Mulyanto. "Item Collaborative Filtering untuk Rekomendasi Pembelian Buku secara Online." Jurnal Sistem Informasi Indonesia 1.1 (2011): 63-70.

[10] Susanto Hardo. (2014) Perancangan Sistem Rekomendasi Pakaian Distro Dengan Menggunakan Item Collaborative Filtering (Studi Kasus: The Jungle Distro Medan) . Medan.

[11] Royce, W. W. (1970). Managing the Development of large Software Systems. Proceedings of IEEE WESCON, 1-9.

[12] Sasmito, G. W.,2017. "Penerapan Metode Waterfall Pada Desain Sistem Informasi Geografis Industri Tegal", pp. 4-6

[13] Suroso p. a. (2018) Sistem Pendukung Keputusan Penanganan Kejadian Abortus dengan Metode Ahp (Analytical Hierarchy Process). Jurnal.Stmikelrahma.

[14] Iskandar, J., Aman, M., Sasono, I., Riyanto, R., Wiyono, N., Suroso, S., & Yanto, A. (2024). Penerapan metode Topsis Pada Sistem Pendukung Keputusan Seleksi beasiswa Peningkatkan Prestasi Akademik Dengan Pendekatan Oop.

[15] Laudon, Keneth C. dan Jane P. Laudon. (2007). Management Information Systems: Managing The Digital, International Jounarl Of Computers, Communications & Control (IJCCC). 2(1):103, 10.15837/ijccc.2007.1.2342.

[16] O’Brien, J. A., & Marakas, G. M. (2011). Management Information Systems. McGraw-Hill.

[17] Anggono a., Emanuel A. W. R. (2014) Sistem Rekomendasi pada Portal Lowongan Kerja Menggunakan Metode Simple Additive Weighting. Jurnal Informatika.

[18] Theodorus, Arvid. User-Based Collaborative Filtering Dengan Memanfaatkan Pearson-Correlation Untuk Mencari Neighbors Terdekat Dalam Sistem Rekomendasi. Diss. UAJY, 2016.

[19] Robbani, Mufti, Rima Dias Ramadhani, and Andika Elok Amalia. "Analisa Algoritma Cosine Similarity dengan Pearson Correlation pada Metode Item-based Collaborative Filtering dengan Menggunakan Dataset Movielens." Conference on Electrical Engineering, Telematics, Industrial technology, and Creative Media (CENTIVE). 2018.

Downloads

Published

2025-12-06

How to Cite

[1]
M. T. Rizky, R. Rinianty, D. W. Nugraha, A. Amriana, and N. T. Lapatta, “Implementation of Collaborative Filtering in the Salted Fish Recommendation Process”, JAIC, vol. 9, no. 6, pp. 3374–3382, Dec. 2025.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.