Comparative No-Reference Evaluation of Classical Image Sharpening Techniques under Varying Degradation Conditions

Authors

  • Siane Santoso Universitas Dian Nuswantoro
  • De Rosal Ignatius Moses Setiadi Universitas Dian Nuswantoro
  • Ricardus Anggi Pramunendar Dian Nuswantoro University

DOI:

https://doi.org/10.30871/jaic.v9i6.11430

Keywords:

Image Sharpening, Unsharp Masking, Laplacian of Gaussian, High-Boost Filtering, Adaptive High-Boost Filtering

Abstract

This research conducts a comparative evaluation of four image sharpening methods: Unsharp Masking, Laplacian of Gaussian, High-Boost Filtering, and Adaptive High-Boost Filtering. These methods are tested on low-contrast, blurred, normal, and high-contrast images. The assessment uses No Reference Image Quality Assessment metrics, specifically BRISQUE and NIQE, along with intensity histogram analysis and visual inspection. Results show that High-Boost Filtering improves global contrast, reducing BRISQUE scores to 26.28 for low-contrast images and 27.56 for high-contrast images, although it can cause halo artifacts. Unsharp Masking performs best on blurred images, lowering BRISQUE to 26.65, but it is more sensitive to noise. The Laplacian of Gaussian yields relatively low NIQE scores, such as 3.04 in low-contrast and 3.10 in high-contrast images; however, its output often appears coarse in texture. Adaptive High-Boost Filtering performs best on normal images, achieving a BRISQUE score of 11.89, but shows limited improvement in other cases. Notably, alignment between NIQE scores and perceptual evaluation is only observed in high-contrast images. These results confirm that no single technique is universally optimal, emphasizing the importance of selecting sharpening methods based on specific image degradation characteristics. Additionally, this observation highlights that BRISQUE more reliably reflects perceived image quality, whereas NIQE occasionally diverges from subjective judgments.

Downloads

Download data is not yet available.

References

[1] M. F. Hanafiah, Rismayanti, and Y. F. A. Lubis, “Analisis Pengaruh Citra Gelap Terhadap Kinerja Metode High Boost Filtering Dan Adaptive Histogram Equalization,” in Snastikom, 2022, pp. 298–303. [Online]. Available: https://prosiding.snastikom.com/index.php/SNASTIKOM2020/article/view/30

[2] R. Rambe, “Perbaikan Kualitas Citra Digital Menggunakan Metode Kervel Konvolusi,” TIN Terap. Inform. Nusant., vol. 1, no. 11, pp. 557–561, 2021, [Online]. Available: https://ejurnal.seminar-id.com/index.php/tin/article/view/681

[3] U. Sara, M. Akter, and M. S. Uddin, “Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study,” J. Comput. Commun., vol. 07, no. 03, pp. 8–18, 2019, doi: 10.4236/jcc.2019.73002.

[4] S. Pennada, M. Perry, J. McAlorum, H. Dow, and G. Dobie, “Threshold-Based BRISQUE-Assisted Deep Learning for Enhancing Crack Detection in Concrete Structures,” J. Imaging, vol. 9, no. 10, p. 218, Oct. 2023, doi: 10.3390/jimaging9100218.

[5] Y. Qi et al., “A Comprehensive Overview of Image Enhancement Techniques,” Arch. Comput. Methods Eng., vol. 29, no. 1, pp. 583–607, Jan. 2022, doi: 10.1007/s11831-021-09587-6.

[6] D. C. Lepcha, B. Goyal, A. Dogra, K. P. Sharma, and D. N. Gupta, “A deep journey into image enhancement: A survey of current and emerging trends,” Inf. Fusion, vol. 93, pp. 36–76, May 2023, doi: 10.1016/j.inffus.2022.12.012.

[7] T. D. Pham, “Kriging-Weighted Laplacian Kernels for Grayscale Image Sharpening,” IEEE Access, vol. 10, pp. 57094–57106, 2022, doi: 10.1109/ACCESS.2022.3178607.

[8] A. Ardiwinata, “Image Edge Sharpening Pada Sketsa Gambar Menggunakan Metode Haar Wavelet,” Bull. Inf. Syst. Res., vol. 2, no. 1, pp. 41–52, Dec. 2023, doi: 10.62866/bios.v2i1.128.

[9] K. Aviantoro and Y. Darnita, “Implementasi Wiener, Contrast Stretching, dan Sharpening Filter pada Citra Semangka menggunakan MSE, RMSE, dan PSNR,” Djtechno J. Teknol. Inf., vol. 5, no. 2, pp. 195–205, Aug. 2024, doi: 10.46576/djtechno.v5i2.4613.

[10] R. -, “Implementasi Teknik Unsharp Mask untuk Penajaman Citra Digital menggunakan OpenCV,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 3, pp. 738–743, Jul. 2025, doi: 10.23960/jitet.v13i3.6976.

[11] A. L. Rajagukguk, “Kombinasi Metode Unsharp Masking dan Filter High Boost Dalam Meningkatkan Kualitas Video Call,” J. Informatics Manag. Inf. Technol., vol. 2, no. 4, pp. 151–158, 2022, doi: https://doi.org/10.47065/jimat.v2i4.180.

[12] J. Wang, X. Zhang, Z. Zhang, and X. Xu, “Unsharp Mask Guided Filtering for Acoustic Point Cloud of Water-Conveyance Tunnel,” Appl. Sci., vol. 12, no. 13, p. 6516, Jun. 2022, doi: 10.3390/app12136516.

[13] S. Mathur and G. Sandeep, “An Enhanced Edge Detection Using Laplacian Gaussian Filtering Method from Different Denoising Images,” Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 18s, pp. 313–323, 2024, [Online]. Available: https://ijisae.org/index.php/IJISAE/article/view/4975

[14] H. A. Alrikabi, M. M. D. Siraj, and A. M. Alnasrallah, “Enhancing Low-Resolution Images Through Noise Filtering and Feature Preservation,” J. Theor. Appl. Inf. Technol., vol. 103, no. 2, pp. 732–739, 2025.

[15] Y. Raphiphan, S. Wattanakaroon, and S. Khetkeeree, “Adaptive High Boost Filtering for Increasing Grayscale and Color Image Details,” in 2020 International Conference on Power, Energy and Innovations (ICPEI), IEEE, Oct. 2020, pp. 69–72. doi: 10.1109/ICPEI49860.2020.9431572.

[16] R. Devita, O. E. Putra, and E. Rianti, “Perbandingan Kernel Penajaman, Gaussian Blur Dan Deteksi Tepi Pada Citra Otak,” J. Sci. Soc. Res., vol. 7, no. 4, pp. 1521–1526, 2024, doi: https://doi.org/10.54314/jssr.v7i4.2271.

[17] J. Li, J. Yang, X. Jiang, B. Yang, and G. Chen, “CAMFv2: Better, faster and stronger for electrochemiluminescence image denoising,” Appl. Intell., vol. 55, no. 11, p. 779, Jul. 2025, doi: 10.1007/s10489-025-06652-6.

[18] A. B. Suleiman, K. A. F. Donfack, A. Muhammad, and M. J. Haruna, “A Multilevel Digital Image Thresholding Technique Based on an Enhanced Firefly Algorithm with Neighborhood Attraction,” J. Comput. Theor. Appl., vol. 2, no. 4, pp. 572–587, May 2025, doi: 10.62411/jcta.12618.

[19] H. M. S. S. Herath, H. M. K. K. M. B. Herath, N. Madusanka, and B.-I. Lee, “A Systematic Review of Medical Image Quality Assessment,” J. Imaging, vol. 11, no. 4, p. 100, Mar. 2025, doi: 10.3390/jimaging11040100.

[20] L. Jia, H. Ren, Z. Zhang, L. Song, and K. Jia, “Visual information fidelity based frame level rate control for H.265/HEVC,” Signal Process. Image Commun., vol. 131, p. 117245, Feb. 2025, doi: 10.1016/j.image.2024.117245.

[21] M. Al-Imran, M. Z. A. Liza, M. M. Bin Shiraj, M. M. Murshed, and N. Akhter, “A Cubical Persistent Homology-Based Technique for Image Denoising with Topological Feature Preservation,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 222–243, Oct. 2024, doi: 10.62411/jcta.11488.

[22] Z. Liu, H. Hong, Z. Gan, J. Wang, and Y. Chen, “An Improved Method for Evaluating Image Sharpness Based on Edge Information,” Appl. Sci., vol. 12, no. 13, p. 6712, Jul. 2022, doi: 10.3390/app12136712.

[23] D. Varga, “No-Reference Image Quality Assessment Using the Statistics of Global and Local Image Features,” Electronics, vol. 12, no. 7, p. 1615, Mar. 2023, doi: 10.3390/electronics12071615.

[24] J. Shim and Y. Lee, “No-Reference-Based and Noise Level Evaluations of Cinematic Rendering in Bone Computed Tomography,” Bioengineering, vol. 11, no. 6, p. 563, Jun. 2024, doi: 10.3390/bioengineering11060563.

[25] J. Rajevenceltha and V. H. Gaidhane, “An efficient approach for no-reference image quality assessment based on statistical texture and structural features,” Eng. Sci. Technol. an Int. J., vol. 30, p. 101039, Jun. 2022, doi: 10.1016/j.jestch.2021.07.002.

[26] K. M, P. M, and J. James, “No-Reference Image Quality Analysis-An Overview,” in NCREIS - 2021, 2021, pp. 56–59. [Online]. Available: https://www.ijert.org/no-reference-image-quality-analysis-an-overview

[27] Z. Zhang et al., “A No-Reference Evaluation Metric for Low-Light Image Enhancement,” in 2021 IEEE International Conference on Multimedia and Expo (ICME), IEEE, Jul. 2021, pp. 1–6. doi: 10.1109/ICME51207.2021.9428312.

[28] A. Rubel, O. Ieremeiev, V. Lukin, J. Fastowicz, and K. Okarma, “Combined No-Reference Image Quality Metrics for Visual Quality Assessment Optimized for Remote Sensing Images,” Appl. Sci., vol. 12, no. 4, p. 1986, Feb. 2022, doi: 10.3390/app12041986.

[29] E. Eldarova, V. Starovoitov, and K. Iskakov, “Comparative Analysis of Universal Methods No Reference Quality Asessment Digital Images,” J. Theor. Appl. Inf. Technol., vol. 99, no. 9, pp. 1977–1987, 2021.

[30] X. Pan, C. Li, Z. Pan, J. Yan, S. Tang, and X. Yin, “Low-Light Image Enhancement Method Based on Retinex Theory by Improving Illumination Map,” Appl. Sci., vol. 12, no. 10, p. 5257, May 2022, doi: 10.3390/app12105257.

[31] “Georgia Tech face database - Academic Torrents.” Accessed: Sep. 11, 2025. [Online]. Available: https://academictorrents.com/details/0848b2c9b40e49041eff85ac4a2da71ae13a3e4f

[32] “LAPA Face Parsing Dataset.” Accessed: Sep. 11, 2025. [Online]. Available: https://www.kaggle.com/datasets/kiranraghavendrauci/lapa-face-parsing-dataset

[33] “Special Database 32 - Multiple Encounter Dataset (MEDS) | NIST.” [Online]. Available: https://www.nist.gov/itl/iad/btg/special-database-32-multiple-encounter-dataset-meds

[34] S. Fatimatuzzahro and R. V. Yuliantari, “Peningkatan Kualitas Citra pada Foto Sejarah Menggunakan Metode Histogram Equalization dan Intensity Adjustment,” J. Appl. Electr. Eng., vol. 5, no. 2, pp. 36–42, Dec. 2021, doi: 10.30871/jaee.v5i2.3160.

[35] N. S.*, P. K V, and A. K., “Blur Detection and Classification using Dnn,” Int. J. Recent Technol. Eng., vol. 8, no. 6, pp. 4777–4780, Mar. 2020, doi: 10.35940/ijrte.F9920.038620.

[36] G.-J. Son, H.-C. Jung, and Y.-D. Kim, “Temporal-Quality Ensemble Technique for Handling Image Blur in Packaging Defect Inspection,” Sensors, vol. 24, no. 14, p. 4438, Jul. 2024, doi: 10.3390/s24144438.

[37] N. A. Harron, S. N. Sulaiman, M. K. Osman, N. K. A. Karim, and I. S. Isa, “Laplacian-Based Blur Detection Algorithm for Digital Breast Tomosynthesis Images in Improving Breast Cancer Detection,” J. Heal. Transl. Med., vol. sp2023, no. 1, pp. 158–164, Jun. 2023, doi: 10.22452/jummec.sp2023no1.15.

[38] V. Banupriya and A. Kalaivani, “Improved retinal fundus image quality with hybrid image filter and enhanced contrast limited adaptive histogram equalization,” Int. J. Health Sci. (Qassim)., vol. 6, no. March, pp. 9234–9246, May 2022, doi: 10.53730/ijhs.v6nS1.7090.

[39] Y. Mu et al., “DenseNet weed recognition model combining local variance preprocessing and attention mechanism,” Front. Plant Sci., vol. 13, no. January, pp. 1–16, Jan. 2023, doi: 10.3389/fpls.2022.1041510.

[40] M. Al-Khafaji and N. T. A. Ramaha, “Hybrid deep learning architecture for scalable and high-quality image compression,” Sci. Rep., vol. 15, no. 1, p. 22926, Jul. 2025, doi: 10.1038/s41598-025-06481-0.

[41] J. Wang, Z. Hou, Z. Zhang, M. Wang, and H. Cheng, “Combined Deep-Fill and Histogram Equalization Algorithm for Full-Borehole Electrical Logging Image Restoration,” Processes, vol. 12, no. 8, p. 1568, Jul. 2024, doi: 10.3390/pr12081568.

[42] R. García, G. Randall, and L. Raad, “A Short Analysis of BigColor for Image Colorization,” Image Process. Line, vol. 14, pp. 144–158, May 2024, doi: 10.5201/ipol.2024.542.

[43] M. S. Moelya, P. S. Ramadhan, and M. G. Suryanata, “Perbandingan Metode Canny, Sobel, Dan Laplacian of Gaussian Dalam Mendeteksi Tepi Citra Objek Bergerak,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 3, no. 4, pp. 450–460, Jul. 2024, doi: 10.53513/jursi.v3i4.6466.

[44] H. Gulo, “Penerapan Laplacian of Gaussian Dalam Mendeteksi Tepi Luka Bakar Pada Manusia,” TIN Terap. Inform. Nusant., vol. 1, no. 7, pp. 339–349, 2020, [Online]. Available: https://ejurnal.seminar-id.com/index.php/tin/article/view/556

[45] M. S. Millan and E. Valencia, “Image sharpening based on spatiochromatic properties of the human vision system,” Conf. Colour Graph. Imaging, Vis., vol. 3, no. 1, pp. 30–33, Jan. 2006, doi: 10.2352/CGIV.2006.3.1.art00006.

[46] C. Yu, G. Han, M. Pan, X. Wu, and A. Deng, “Zero-TCE: Zero Reference Tri-Curve Enhancement for Low-Light Images,” Appl. Sci., vol. 15, no. 2, p. 701, Jan. 2025, doi: 10.3390/app15020701.

[47] J. Wang, S. Huang, Z. Huo, S. Zhao, and Y. Qiao, “Bilateral enhancement network with signal-to-noise ratio fusion for lightweight generalizable low-light image enhancement,” Sci. Rep., vol. 14, no. 1, p. 29832, Nov. 2024, doi: 10.1038/s41598-024-81706-2.

[48] H. S. Utami, I. M. P. Rahmawati, and R. Reski, “Analysis Histogram and Grayscale on Chest X-ray Computed Radiography Image in Covid-19 Disease vs Normal; Hernastiti Sedya Utami,” J. eduhealth, vol. 13, no. 02, pp. 1104–1109, 2022, [Online]. Available: https://ejournal.seaninstitute.or.id/index.php/healt/article/view/805

Downloads

Published

2025-12-07

How to Cite

[1]
S. Santoso, D. R. I. M. Setiadi, and R. A. Pramunendar, “Comparative No-Reference Evaluation of Classical Image Sharpening Techniques under Varying Degradation Conditions”, JAIC, vol. 9, no. 6, pp. 3442–3453, Dec. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.