Performance Analysis of the Item-Based Collaborative Filtering Model in Yogyakarta Tourism Recommendations

Authors

  • Melany Mustika Dewi Universitas AMIKOM Yogyakarta
  • Ria Andriani Universitas Amikom Yogyakarta
  • M. Nuraminudin Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i2.8866

Keywords:

Item Based, Collaborative Filtering, Recommendation Systems, Yogyakarta Tourism

Abstract

Yogyakarta is one of the most popular tourist destinations in Indonesia, offering a variety of attractions ranging from beaches and mountains to historical sites. This diversity poses a challenge for tourists in selecting destinations that match their preferences. This study employs the Item-Based Collaborative Filtering method to recommend tourist destinations based on the similarity between attractions, calculated using cosine similarity. The data analyzed includes 1,069 tourist destinations in Yogyakarta, obtained from Google Maps API, Scrapetable, and Outscraper. The results indicate that the developed recommendation model achieves high accuracy with a Mean Absolute Error (MAE) of 2.537. Compared to previous approaches, this method improves the relevance and quality of recommendations, helping tourists find destinations that suit their preferences. This study contributes to the development of more personalized and effective recommendation systems for the tourism sector.

Downloads

References

[1] Badan Pusat Statistik, “Statistik Pariwisata Indonesia 2022,” Badan Pusat Statistik.

[2] Alsa Yuda Putri, Usep Suhud, and Rahmi, “Peran Destination Attributes dalam Meningkatkan Revisit Intention: Kasus pada Turis di Keraton Ngayogyakarta Hadiningrat,” JEMSI (Jurnal Ekonomi, Manajemen, dan Akuntansi), vol. 9, no. 4, pp. 1668–1678, Aug. 2023, doi: 10.35870/jemsi.v9i4.1414.

[3] F. T. Abdul Hussien, A. M. S. Rahma, and H. B. Abdul Wahab, “Recommendation Systems For E-commerce Systems An Overview,” J Phys Conf Ser, vol. 1897, no. 1, p. 012024, May 2021, doi: 10.1088/1742-6596/1897/1/012024.

[4] H. Ko, S. Lee, Y. Park, and A. Choi, “A Survey of Recommendation Systems: Recommendation Models, Techniques, and Application Fields,” Electronics (Basel), vol. 11, no. 1, p. 141, Jan. 2022, doi: 10.3390/electronics11010141.

[5] F. Fkih, “Similarity measures for Collaborative Filtering-based Recommender Systems: Review and experimental comparison,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 9, pp. 7645–7669, Oct. 2022, doi: 10.1016/j.jksuci.2021.09.014.

[6] M. M. Dewi, “Optimasi Pearson Correlation untuk Sistem Rekomendasi menggunakan Algoritma Firefly,” JURNAL INFORMATIKA, vol. 9, no. 1, pp. 1–5, Apr. 2022.

[7] D. Nugraha, T. W. Purboyo, and R. A. Nugrahaeni, “Sistem Rekomendasi Film Menggunakan Metode User Based Collaborative Filtering (Movie Recommendation System Using User Based Collaborative Filtering Method).”

[8] L. Gang, “Personalized Recommendation of Tourist Attractions Based on Collaborative Filtering. ,” IEEE Xplore, 2020.

[9] A. H. Ardiansyah, “Implementation of Item-Based Collaborative Filtering on Web-Based Culinary Tourism System,” Journal Unimma, 2022.

[10] C. Ajaegbu, “An optimized item-based collaborative filtering algorithm,” J Ambient Intell Humaniz Comput, vol. 12, no. 12, pp. 10629–10636, Dec. 2021, doi: 10.1007/s12652-020-02876-1.

[11] A. M. Ninan and J. E. Rajan, “An Item-Based Collaborative Filtering on Recommendation of Travel Route,” Academia, 2019.

[12] Rayhan Rizal Mahendra, Fetty Tri Anggraeny, and Henni Endah Wahanani, “Implementasi Item-Based Collaborative Filtering Untuk Rekomendasi Film,” Repeater : Publikasi Teknik Informatika dan Jaringan, vol. 2, no. 3, pp. 213–221, Jul. 2024, doi: 10.62951/repeater.v2i3.140.

[13] Ibrahim Asad and Muhhamad Zakariyah, “Aplikasi Rekomendasi Pemesanan Paket Wisata Menggunakan Metode Collaborative Filltering,” METIK JURNAL, vol. 7, no. 2, pp. 76–84, Dec. 2023, doi: 10.47002/metik.v7i2.639.

[14] R. Marappan, “Movie Recommendation System using an Item-based Collaborative Filtering,” International Journal of Mathematical, Engineering, Biological and Applied Computing, vol. 1, no. 1, pp. 42–43, Jun. 2022, doi: 10.31586/ijmebac.2022.340.

[15] A. Agustian, S. P. A. Alkadri, and I. Istikoma, “Penerapan Metode Collaborative Filtering untuk Rekomendasi Tempat Kos di Sekitar Kampus UM Pontianak,” Jurnal Informatika Polinema, vol. 10, no. 3, pp. 333–340, May 2024, doi: 10.33795/jip.v10i3.5085.

[16] S. Rosyad, D. Mahendra, and N. Azizah, “Sistem Rekomendasi Buku Di Perpustakaan Daerah Jepara Menggunakan Metode Item-Based Collaborative Filtering,” Biner : Jurnal Ilmiah Informatika dan Komputer, vol. 2, no. 2, pp. 76–81, Jul. 2023, doi: 10.32699/biner.v2i2.3934.

[17] F. Kurniawan, A. Kania Ningsih, and A. Komarudin, “Sistem Rekomendasi Channel Youtube Resep Masakan Menggunakan Collaborative Filtering,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 4, pp. 5849–5855, Jun. 2024, doi: 10.36040/jati.v8i4.10107.

[18] R. Y. Hayuningtyas and R. Sari, “Implementasi Data Mining Dengan Algoritma Multiple Linear Regression Untuk Memprediksi Penyakit Diabetes”, doi: 10.31294/jtk.v4i2.

[19] H. Hartatik, S. D. Nurhayati, and W. Widayani, “Sistem Rekomendasi Wisata Kuliner di Yogyakarta dengan Metode Item-Based Collaborative Filtering,” Journal Automation Computer Information System, vol. 1, no. 2, pp. 55–63, Nov. 2021, doi: 10.47134/jacis.v1i2.8.

[20] B. Zuraeni and Fitrianingsih, “EKOSPHERE: Jurnal Ekonomi Pembangunan dan Manajemen Volume Analisis Ramalan Cuaca di Sekupang, Kota Batam Menggunakan Algoritma Decision Tree dan Confusion Matrix.” [Online]. Available: https://ibnusinapublisher.org/index.php/EKOSPHERE

Downloads

Published

2025-03-26

How to Cite

[1]
M. M. Dewi, R. Andriani, and M. Nuraminudin, “Performance Analysis of the Item-Based Collaborative Filtering Model in Yogyakarta Tourism Recommendations”, JAIC, vol. 9, no. 2, pp. 534–541, Mar. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.