Identification of Latent Dimensions of Digital Readiness and Typology of Districts/Cities in Indonesia Using PCA and K-Means Clustering
DOI:
https://doi.org/10.30871/jaic.v9i6.11487Keywords:
IMDI, Regional Typology, Digital Readiness, Principal Component Analysis, K-Means ClusteringAbstract
Digital transformation is a key agenda in Indonesia’s national development that requires balanced readiness across regions. However, the level of digital readiness among districts and cities still varies widely, highlighting the need for a typology that can comprehensively describe existing disparities. This study aims to identify the latent dimensions of digital readiness and to develop a regional typology of Indonesian districts/cities using Principal Component Analysis (PCA) and K-Means clustering. The data were obtained from the 2024 Indonesian Digital Society Index (IMDI), which consists of four pillars—Infrastructure and Ecosystem, Digital Skills, Empowerment, and Employment—with ten sub-pillars. PCA reduced these correlated indicators into two main latent components, namely Digital Capacity and Participation and Digital Infrastructure Foundation, which together explain 70.4% of the total variance. Cluster validation using the Silhouette Score and Davies–Bouldin Index (DBI) showed that K = 2 yielded the best internal validity (Silhouette = 0.402; DBI = 0.906), but a three-cluster configuration (K = 3) was adopted to obtain a more interpretable typology of high-, medium-, and low-readiness regions (Silhouette = 0.346; DBI = 1.007). Spatial mapping reveals that high-readiness districts are concentrated in Java, Bali, and parts of Sumatra, whereas low-readiness areas dominate eastern Indonesia. These findings confirm persistent digital inequality across regions and provide a quantitative basis for targeted policy interventions, including infrastructure development, digital literacy programs, and innovation ecosystem strengthening, to support an inclusive digital transformation in Indonesia.
Downloads
References
[1] R. D. Wahyunengseh, T. N. Haryani, P. Susiloadi, and L. Fahmi, “Masyarakat Digital dan Problematika Kesejahteraan: Analisis Isi Wacana Digital,” vol. 17, pp. 163–172, 2022.
[2] Polrendyo, I. D. Pramudiana, E. Haryati, and S. Kamariyah, “Digital Transformation In Regional Revenue Management : A Case Study At Bapenda Of East Java Province,” no. 95, 2025.
[3] M. Z. Fitry et al., “Analyzing Telecommunication Infrastructure Index as Indicator of Digital Transformation: A Bibliometric Analysis BT - Proceedings of the 4th International Conference on Advances in Communication Technology and Computer Engineering (ICACTCE’24),” C. Iwendi, Z. Boulouard, and N. Kryvinska, Eds., Cham: Springer Nature Switzerland, 2025, pp. 419–432.
[4] Y. Syahidin et al., “The application of unsupervised learning techniques to the clustering method in use of cell phones in Indonesia,” in 2022 International Conference on Science and Technology (ICOSTECH), 2022, pp. 1–5. doi: 10.1109/ICOSTECH54296.2022.9829089.
[5] I. G. N. M. Jaya et al., “Framework for Monitoring the Spatiotemporal Distribution and Clustering of the Digital Society Index of Indonesia,” Sustain., vol. 16, no. 24, pp. 1–22, 2024, doi: 10.3390/su162411258.
[6] D. A. R. Wati, A. Čaplánová, and Ľ. Darmo, “Identification of Digital Divide across Indonesian Provinces: the Analysis of Key Factors,” Statistika, vol. 104, no. 2, pp. 185–202, 2024, doi: 10.54694/stat.2024.3.
[7] F. Kartiasih, N. Djalal Nachrowi, I. D. G. K. Wisana, and D. Handayani, “Inequalities of Indonesia’s regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis,” Inf. Technol. Dev., vol. 29, no. 2–3, pp. 299–328, Jul. 2023, doi: 10.1080/02681102.2022.2110556.
[8] Ü. Fidan, “Convergence or divergence? Trends in the digitalisation index cluster over the years,” Reg. Stat., vol. 14, no. 6, pp. 1050–1068, 2024, doi: 10.15196/RS140602.
[9] B. Zoltán and D. Imre, “Digital development of countries using tiered DEA, tiered Pareto efficiency and Cluster Analysis with data from the 2020 International DESI,” Statisztikai Szle., vol. 101, no. 11, pp. 978–998, 2023, doi: 10.20311/stat2023.11.hu0978.
[10] A. L. Yusniyanti, F. Virgantari, and Y. E. Faridhan, “Comparison of Average Linkage and K-Means Methods in Clustering Indonesia’s Provinces Based on Welfare Indicators,” J. Phys. Conf. Ser., vol. 1863, no. 1, 2021, doi: 10.1088/1742-6596/1863/1/012071.
[11] C. Ding, “K -means Clustering via Principal Component Analysis,” 2004.
[12] S. A. Mousavian Anaraki, A. Haeri, and F. Moslehi, “A hybrid reciprocal model of PCA and K-means with an innovative approach of considering sub-datasets for the improvement of K-means initialization and step-by-step labeling to create clusters with high interpretability,” Pattern Anal. Appl., vol. 24, no. 3, pp. 1387–1402, 2021, doi: 10.1007/s10044-021-00977-x.
[13] S. N. Mayasari and J. Nugraha, “Implementasi K-Means Cluster Analysis untuk Mengelompokkan Kabupaten/Kota Berdasarkan Data Kemiskinan di Provinsi Jawa Tengah Tahun 2022,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 317–329, 2023, doi: 10.24002/konstelasi.v3i2.7200.
[14] R. Magriaty, K. Murtilaksono, and S. Anwar, “Analisis K-Means Cluster untuk Identifikasi Kawasan Pengelolaan Sampah di Kabupaten Tapin Provinsi Kalimantan Selatan,” J. Reg. Rural Dev. Plan., vol. 7, no. 1, pp. 79–90, 2023, doi: 10.29244/jp2wd.2023.7.1.79-90.
[15] A. Fitriani, E. Arfi, and A. Huda, “Penerapan Algoritma K-Means Clustering dalam Memetakan Produktivitas Lokasi Perkebunan Nanas PT Great Giant Pineapple,” J. Math. Comput. Stat., vol. 7, no. 2, pp. 215–231, 2024, doi: 10.35580/jmathcos.v7i2.4200.
[16] R. H. Maharrani, P. D. Abda’u, and M. N. Faiz, “Clustering method for criminal crime acts using K-means and principal component analysis,” Indones. J. Electr. Eng. Comput. Sci., vol. 34, no. 1, pp. 224–232, 2024, doi: 10.11591/ijeecs.v34.i1.pp224-232.
[17] Muhammad Raqib Syahkur, D. Hartama, and S. Solikhun, “Evaluasi Jumlah Cluster pada Algoritma K-Means++ Menggunakan Silhouette dan Elbow dengan Validasi Nilai DBI dalam Mengelompokkan Gizi Balita,” J. Sains dan Teknol., vol. 13, no. 3, pp. 487–496, 2024, doi: 10.23887/jstundiksha.v13i3.86419.
[18] C. I. Amalia, Fitria, and M. Sitorus, “Indonesia Berdasarkan Aspek Sosial Ekonomi Menggunakan Algoritma K-Means,” J. Ilmu Komputer, Sist. Inf. dan Teknol. Inf., vol. 2, no. 1, pp. 9–18, 2025.
[19] D. K. Maheswari, “Finding Best Possible Number of Clusters using K-Means Algorithm,” Int. J. Eng. Adv. Technol., vol. 9, no. 1s4, pp. 533–538, 2019, doi: 10.35940/ijeat.a1119.1291s419.
[20] N. Sutantri, V. Yunitasari, G. R. Sa’adi, S. Ananda, and Z. Alfian, “Analisis Konsistensi Metode Elbow dan Silhouette Score dalam Klasterisasi pada Dataset Multisektor,” J. Innov. Creat., vol. 5, no. 2, pp. 10731–10743, 2025, doi: 10.31004/joecy.v5i2.1690.
[21] T. Ikhsan, E. Haerani, F. Wulandari, and F. Syafria, “Clustering Data Penduduk Menggunakan Algoritma K-Means TIN : Terapan Informatika Nusantara,” vol. 5, no. 12, pp. 955–963, 2025, doi: 10.47065/tin.v5i12.7328.
[22] A. S. Ahmar, D. Napitupulu, R. Rahim, R. Hidayat, Y. Sonatha, and M. Azmi, “Using K-Means Clustering to Cluster Provinces in Indonesia,” J. Phys. Conf. Ser., vol. 1028, no. 1, 2018, doi: 10.1088/1742-6596/1028/1/012006.
[23] P. P. E. S. K. dan Digital, “Data Indeks Masyarakat Digital Indonesia (IMDI) Tingkat Kabupaten/Kota,” 2024. [Online]. Available: https://imdi.sdmdigital.id/unduh-data
[24] M. S. Bartlett, “Tests Of Significance In Factor Analysis,” Br. J. Stat. Psychol., vol. 3, no. 2, pp. 77–85, Jun. 1950, doi: 10.1111/J.2044-8317.1950.TB00285.X.
[25] I. T. Jollife and J. Cadima, “Principal component analysis: A review and recent developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2065, 2016, doi: 10.1098/rsta.2015.0202.
[26] Q. Fournier and D. Aloise, “Empirical comparison between autoencoders and traditional dimensionality reduction methods,” 2019, doi: 10.1109/AIKE.2019.00044.
[27] Z. Shen, “Comparison and Evaluation of Classical Dimensionality Reduction Methods,” Highlights Sci. Eng. Technol., vol. 70, pp. 411–418, 2023, doi: 10.54097/hset.v70i.13890.
[28] T. M. Kodinariya and P. R. Makwana, “Review on determining number of Cluster in K-Means Clustering. International Journal,” Int. J., vol. 1, no. 6, pp. 90–95, 2013.
[29] D. Hartama and S. Oktaviani, “Optimization of K-Means and K-Medoids Clustering Using Dbi Silhouette Elbow on Student Data,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 11, no. 2, pp. 289–296, 2025, doi: 10.33330/jurteksi.v11i2.3531.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jefita Resti Sari, Fani Fahira, Latifah Zahra, Anwar Fitrianto, Kevin Alifviansyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








