Identification of Latent Dimensions of Digital Readiness and Typology of Districts/Cities in Indonesia Using PCA and K-Means Clustering

Authors

  • Jefita Resti Sari IPB University
  • Fani Fahira IPB University
  • Latifah Zahra IPB University
  • Anwar Fitrianto IPB University
  • Kevin Alifviansyah IPB University

DOI:

https://doi.org/10.30871/jaic.v9i6.11487

Keywords:

IMDI, Regional Typology, Digital Readiness, Principal Component Analysis, K-Means Clustering

Abstract

Digital transformation is a key agenda in Indonesia’s national development that requires balanced readiness across regions. However, the level of digital readiness among districts and cities still varies widely, highlighting the need for a typology that can comprehensively describe existing disparities. This study aims to identify the latent dimensions of digital readiness and to develop a regional typology of Indonesian districts/cities using Principal Component Analysis (PCA) and K-Means clustering. The data were obtained from the 2024 Indonesian Digital Society Index (IMDI), which consists of four pillars—Infrastructure and Ecosystem, Digital Skills, Empowerment, and Employment—with ten sub-pillars. PCA reduced these correlated indicators into two main latent components, namely Digital Capacity and Participation and Digital Infrastructure Foundation, which together explain 70.4% of the total variance. Cluster validation using the Silhouette Score and Davies–Bouldin Index (DBI) showed that K = 2 yielded the best internal validity (Silhouette = 0.402; DBI = 0.906), but a three-cluster configuration (K = 3) was adopted to obtain a more interpretable typology of high-, medium-, and low-readiness regions (Silhouette = 0.346; DBI = 1.007). Spatial mapping reveals that high-readiness districts are concentrated in Java, Bali, and parts of Sumatra, whereas low-readiness areas dominate eastern Indonesia. These findings confirm persistent digital inequality across regions and provide a quantitative basis for targeted policy interventions, including infrastructure development, digital literacy programs, and innovation ecosystem strengthening, to support an inclusive digital transformation in Indonesia.

Downloads

Download data is not yet available.

Author Biographies

Jefita Resti Sari, IPB University

School of Data Science, Mathematics and Informatics, IPB University

Fani Fahira, IPB University

School of Data Science, Mathematics and Informatics, IPB University

Latifah Zahra, IPB University

School of Data Science, Mathematics and Informatics, IPB University

Anwar Fitrianto, IPB University

School of Data Science, Mathematics and Informatics, IPB University

Kevin Alifviansyah, IPB University

School of Data Science, Mathematics and Informatics, IPB University

References

[1] R. D. Wahyunengseh, T. N. Haryani, P. Susiloadi, and L. Fahmi, “Masyarakat Digital dan Problematika Kesejahteraan: Analisis Isi Wacana Digital,” vol. 17, pp. 163–172, 2022.

[2] Polrendyo, I. D. Pramudiana, E. Haryati, and S. Kamariyah, “Digital Transformation In Regional Revenue Management : A Case Study At Bapenda Of East Java Province,” no. 95, 2025.

[3] M. Z. Fitry et al., “Analyzing Telecommunication Infrastructure Index as Indicator of Digital Transformation: A Bibliometric Analysis BT - Proceedings of the 4th International Conference on Advances in Communication Technology and Computer Engineering (ICACTCE’24),” C. Iwendi, Z. Boulouard, and N. Kryvinska, Eds., Cham: Springer Nature Switzerland, 2025, pp. 419–432.

[4] Y. Syahidin et al., “The application of unsupervised learning techniques to the clustering method in use of cell phones in Indonesia,” in 2022 International Conference on Science and Technology (ICOSTECH), 2022, pp. 1–5. doi: 10.1109/ICOSTECH54296.2022.9829089.

[5] I. G. N. M. Jaya et al., “Framework for Monitoring the Spatiotemporal Distribution and Clustering of the Digital Society Index of Indonesia,” Sustain., vol. 16, no. 24, pp. 1–22, 2024, doi: 10.3390/su162411258.

[6] D. A. R. Wati, A. Čaplánová, and Ľ. Darmo, “Identification of Digital Divide across Indonesian Provinces: the Analysis of Key Factors,” Statistika, vol. 104, no. 2, pp. 185–202, 2024, doi: 10.54694/stat.2024.3.

[7] F. Kartiasih, N. Djalal Nachrowi, I. D. G. K. Wisana, and D. Handayani, “Inequalities of Indonesia’s regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis,” Inf. Technol. Dev., vol. 29, no. 2–3, pp. 299–328, Jul. 2023, doi: 10.1080/02681102.2022.2110556.

[8] Ü. Fidan, “Convergence or divergence? Trends in the digitalisation index cluster over the years,” Reg. Stat., vol. 14, no. 6, pp. 1050–1068, 2024, doi: 10.15196/RS140602.

[9] B. Zoltán and D. Imre, “Digital development of countries using tiered DEA, tiered Pareto efficiency and Cluster Analysis with data from the 2020 International DESI,” Statisztikai Szle., vol. 101, no. 11, pp. 978–998, 2023, doi: 10.20311/stat2023.11.hu0978.

[10] A. L. Yusniyanti, F. Virgantari, and Y. E. Faridhan, “Comparison of Average Linkage and K-Means Methods in Clustering Indonesia’s Provinces Based on Welfare Indicators,” J. Phys. Conf. Ser., vol. 1863, no. 1, 2021, doi: 10.1088/1742-6596/1863/1/012071.

[11] C. Ding, “K -means Clustering via Principal Component Analysis,” 2004.

[12] S. A. Mousavian Anaraki, A. Haeri, and F. Moslehi, “A hybrid reciprocal model of PCA and K-means with an innovative approach of considering sub-datasets for the improvement of K-means initialization and step-by-step labeling to create clusters with high interpretability,” Pattern Anal. Appl., vol. 24, no. 3, pp. 1387–1402, 2021, doi: 10.1007/s10044-021-00977-x.

[13] S. N. Mayasari and J. Nugraha, “Implementasi K-Means Cluster Analysis untuk Mengelompokkan Kabupaten/Kota Berdasarkan Data Kemiskinan di Provinsi Jawa Tengah Tahun 2022,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 317–329, 2023, doi: 10.24002/konstelasi.v3i2.7200.

[14] R. Magriaty, K. Murtilaksono, and S. Anwar, “Analisis K-Means Cluster untuk Identifikasi Kawasan Pengelolaan Sampah di Kabupaten Tapin Provinsi Kalimantan Selatan,” J. Reg. Rural Dev. Plan., vol. 7, no. 1, pp. 79–90, 2023, doi: 10.29244/jp2wd.2023.7.1.79-90.

[15] A. Fitriani, E. Arfi, and A. Huda, “Penerapan Algoritma K-Means Clustering dalam Memetakan Produktivitas Lokasi Perkebunan Nanas PT Great Giant Pineapple,” J. Math. Comput. Stat., vol. 7, no. 2, pp. 215–231, 2024, doi: 10.35580/jmathcos.v7i2.4200.

[16] R. H. Maharrani, P. D. Abda’u, and M. N. Faiz, “Clustering method for criminal crime acts using K-means and principal component analysis,” Indones. J. Electr. Eng. Comput. Sci., vol. 34, no. 1, pp. 224–232, 2024, doi: 10.11591/ijeecs.v34.i1.pp224-232.

[17] Muhammad Raqib Syahkur, D. Hartama, and S. Solikhun, “Evaluasi Jumlah Cluster pada Algoritma K-Means++ Menggunakan Silhouette dan Elbow dengan Validasi Nilai DBI dalam Mengelompokkan Gizi Balita,” J. Sains dan Teknol., vol. 13, no. 3, pp. 487–496, 2024, doi: 10.23887/jstundiksha.v13i3.86419.

[18] C. I. Amalia, Fitria, and M. Sitorus, “Indonesia Berdasarkan Aspek Sosial Ekonomi Menggunakan Algoritma K-Means,” J. Ilmu Komputer, Sist. Inf. dan Teknol. Inf., vol. 2, no. 1, pp. 9–18, 2025.

[19] D. K. Maheswari, “Finding Best Possible Number of Clusters using K-Means Algorithm,” Int. J. Eng. Adv. Technol., vol. 9, no. 1s4, pp. 533–538, 2019, doi: 10.35940/ijeat.a1119.1291s419.

[20] N. Sutantri, V. Yunitasari, G. R. Sa’adi, S. Ananda, and Z. Alfian, “Analisis Konsistensi Metode Elbow dan Silhouette Score dalam Klasterisasi pada Dataset Multisektor,” J. Innov. Creat., vol. 5, no. 2, pp. 10731–10743, 2025, doi: 10.31004/joecy.v5i2.1690.

[21] T. Ikhsan, E. Haerani, F. Wulandari, and F. Syafria, “Clustering Data Penduduk Menggunakan Algoritma K-Means TIN : Terapan Informatika Nusantara,” vol. 5, no. 12, pp. 955–963, 2025, doi: 10.47065/tin.v5i12.7328.

[22] A. S. Ahmar, D. Napitupulu, R. Rahim, R. Hidayat, Y. Sonatha, and M. Azmi, “Using K-Means Clustering to Cluster Provinces in Indonesia,” J. Phys. Conf. Ser., vol. 1028, no. 1, 2018, doi: 10.1088/1742-6596/1028/1/012006.

[23] P. P. E. S. K. dan Digital, “Data Indeks Masyarakat Digital Indonesia (IMDI) Tingkat Kabupaten/Kota,” 2024. [Online]. Available: https://imdi.sdmdigital.id/unduh-data

[24] M. S. Bartlett, “Tests Of Significance In Factor Analysis,” Br. J. Stat. Psychol., vol. 3, no. 2, pp. 77–85, Jun. 1950, doi: 10.1111/J.2044-8317.1950.TB00285.X.

[25] I. T. Jollife and J. Cadima, “Principal component analysis: A review and recent developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2065, 2016, doi: 10.1098/rsta.2015.0202.

[26] Q. Fournier and D. Aloise, “Empirical comparison between autoencoders and traditional dimensionality reduction methods,” 2019, doi: 10.1109/AIKE.2019.00044.

[27] Z. Shen, “Comparison and Evaluation of Classical Dimensionality Reduction Methods,” Highlights Sci. Eng. Technol., vol. 70, pp. 411–418, 2023, doi: 10.54097/hset.v70i.13890.

[28] T. M. Kodinariya and P. R. Makwana, “Review on determining number of Cluster in K-Means Clustering. International Journal,” Int. J., vol. 1, no. 6, pp. 90–95, 2013.

[29] D. Hartama and S. Oktaviani, “Optimization of K-Means and K-Medoids Clustering Using Dbi Silhouette Elbow on Student Data,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 11, no. 2, pp. 289–296, 2025, doi: 10.33330/jurteksi.v11i2.3531.

Downloads

Published

2025-12-05

How to Cite

[1]
J. R. Sari, F. Fahira, L. Zahra, A. Fitrianto, and K. Alifviansyah, “Identification of Latent Dimensions of Digital Readiness and Typology of Districts/Cities in Indonesia Using PCA and K-Means Clustering”, JAIC, vol. 9, no. 6, pp. 2937–2949, Dec. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.