Optimization of Support Vector Machine Model Performance in Image Classification through Dimension Reduction with Principal Component Analysis (PCA)

Authors

  • Zahfar Aziz Ferdian Universitas Teknologi Yogyakarta
  • Joko Sutopo Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v10i1.11675

Keywords:

Support Vector Machine, Principal Component Analysis, Image Classification, Dimensionality Reduction, Feature Reduction

Abstract

This study examines how to optimize a Support Vector Machine (SVM) model using a dimensionality reduction method called Principal Component Analysis (PCA) to classify images with multiple dimensions. The dataset used is Chessman images with an initial number of features of 12,288. PCA was applied with the aim of retaining 99% of the total variation, resulting in 312 principal components. The results show a significant improvement in computational efficiency: training time was drastically reduced from 29.85 seconds to just 0.17 seconds (168 times faster), and memory usage decreased from 25.83 MB to 0.66 MB (97% more efficient). Although the accuracy experienced a small decrease, namely from 31.58% to 31.22%, PCA still functions as a noise filter that helps improve performance, especially in classes with complex visual patterns, such as an increase in the F1-score of the "Rook" class from 0.32 to 0.37. The conclusions of this study indicate that PCA provides important efficiency improvements without significantly sacrificing classification performance.

Downloads

Download data is not yet available.

References

[1] D. Anggriandi, E. Utami, and D. Ariatmanto, “Comparative Analysis of CNN and CNN-SVM Methods For Classification Types of Human Skin Disease,” sinkron, vol. 8, no. 4, pp. 2168–2178, Oct. 2023, doi: 10.33395/sinkron.v8i4.12831.

[2] F. Ennaama, S. Ennaama, and S. Chakri, “Evaluating geometrically-approximated principal component analysis vs. classical eigenfaces: a quantitative study using image quality metrics,” International Journal of Electrical and Computer Engineering, vol. 15, no. 1, pp. 311–318, Feb. 2025, doi: 10.11591/ijece.v15i1.pp311-318.

[3] A. Aristo Jansen Sinlae, D. Alamsyah, L. Suhery, and F. Fatmayati, “Classification of Broadleaf Weeds Using a Combination of K-Nearest Neighbor (KNN) and Principal Component Analysis (PCA),” Sinkron, vol. 7, no. 1, pp. 93–100, Jan. 2022, doi: 10.33395/sinkron.v7i1.11237.

[4] L. G. S. Kartika, P. K. L. Utama, I. D. G. Budiastawa, and K. Rinartha, “Comparison of the Sentiment Analysis Model’s Code Complexity and Processing Time,” Sinkron, vol. 8, no. 1, pp. 109–118, Jan. 2023, doi: 10.33395/sinkron.v8i1.11894.

[5] D. I. Sumantiawan, J. E. Suseno, and W. A. Syafei, “Sentiment Analysis of Customer Reviews Using Support Vector Machine and Smote-Tomek Links For Identify Customer Satisfaction,” J. Sistem Info. Bisnis, vol. 13, no. 1, pp. 1–9, Jun. 2023, doi: 10.21456/vol13iss1pp1-9.

[6] I. B. Sya’idah, S. Surono, and G. Khang Wen, “DynamicWeighted Particle Swarm Optimization - Support Vector Machine Optimization in Recursive Feature Elimination Feature Selection,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 23, no. 3, pp. 627–640, Jul. 2024, doi: 10.30812/matrik.v23i3.3963.

[7] M. Ikhsan and M. Rahardi, “Image-Based Classification of Indonesian Traditional Houses Using a Hybrid CNN-SVM Algorithm,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[8] Z. Elkhadir and M. A. Begdouri, “Enhancing internet of things attack detection using principal component analysis and kernel principal component analysis with cosine distance and sigmoid kernel,” International Journal of Electrical and Computer Engineering, vol. 15, no. 1, pp. 1099–1108, Feb. 2025, doi: 10.11591/ijece.v15i1.pp1099-1108.

[9] M. Fahmi, A. Yudhana, and S. Sunardi, “Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 22, no. 3, pp. 553–566, Jul. 2023, doi: 10.30812/matrik.v22i3.2819.

[10] I. Zainan Nisa, S. Nur Endah, P. Sidik Sasongko, and R. Kusumaningrum, “Klasifikasi Citra Sampah Menggunakan Support Vector Machine Dengan Ekstraksi Fitur Gray Level Co-Occurrence Matrix Dan Color Moments”, doi: 10.25126/jtiik.202294868.

[11] Sugeng and H. Praminiarto, “Detection of Drowsiness in Drivers Using Image Processing and Support Vector Machine (SVM) Classification,” Jurnal Online Informatika, vol. 9, no. 2, pp. 238–248, Aug. 2024, doi: 10.15575/join.v9i2.1076.

[12] B. Oktaviana, “Implementation of the Support Vector Machine (SVM) Method for Classifying the Maturity Level of Oil Palm Fruit,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[13] M. Desiawan and A. Solichin, “SVM Optimization with Grid Search Cross Validation for Improving Accuracy of Schizophrenia Classification Based on EEG Signal,” JURNAL TEKNIK INFORMATIKA, vol. 17, no. 1, pp. 10–20, May 2024, doi: 10.15408/jti.v17i1.37422.

[14] Y. Irawan, R. Pramitasari, W. M. Ashari, A. Nur, and H. Yansyah, “Support Vector Machine Classification Algorithm for Detecting DDoS Attacks on Network Traffic,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[15] T. M. Murugan, C. R. Lenus, S. Sridharan, and A. Malligarjun, “Life Time Prediction Of An Electromagnet Relay Using Clustering Based Principal Component Analysis With Hybrid Deep Learning Model.”

Downloads

Published

2026-02-11

How to Cite

[1]
Z. A. Ferdian and J. Sutopo, “Optimization of Support Vector Machine Model Performance in Image Classification through Dimension Reduction with Principal Component Analysis (PCA)”, JAIC, vol. 10, no. 1, pp. 1066–1073, Feb. 2026.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.