Clustering Time Series Forecasting Model for Grouping Provinces in Indonesia Based on Granulated Sugar Prices

  • Fida Fariha Amatullah Prodi Statistika dan Sains Data, Sekolah SMI, IPB University
  • Erdanisa Aghnia Ilmani Prodi Statistika dan Sains Data, Sekolah SMI, IPB University
  • Anwar Fitrianto Prodi Statistika dan Sains Data, Sekolah SMI, IPB University
  • Erfiani Erfiani Prodi Statistika dan Sains Data, Sekolah SMI, IPB University
  • L. M. Risman Dwi Jumansyah Prodi Statistika dan Sains Data, Sekolah SMI, IPB University
Keywords: Clustering Time Series, Time Series Analysis, Granulated Sugar Prices, ARIMA Models, Forecasting Models

Abstract

Clustering time series is the process of organizing data into groups based on similarities in specific patterns. This research uses the prices of granulated sugar in each province of Indonesia. According to USDA reports, sugar consumption in Indonesia in 2023 reached 7.9 million tons. On April 26, 2024, the price of granulated sugar peaked in the Papua Mountains at Rp29,320 per kg, while the lowest price was recorded in the Riau Islands at Rp16,460 per kg. The research aims to cluster provinces based on the characteristics of granulated sugar prices and to use forecasting models for each group. Two groups were formed based on the price patterns of granulated sugar over time. The provinces of Papua and West Papua are in group 2, while the other 30 provinces are in group 1. The best model developed using the auto ARIMA method is ARIMA (2, 1, 0), with a MAPE value of 2.36% for cluster 1, and ARIMA (1, 1, 1), with a MAPE value of 2.59% for cluster 2. These values are less than 10%, indicating that the models built using the auto ARIMA method for clusters 1 and 2 are suitable for forecasting.

Downloads

Download data is not yet available.

References

D. A. N. Sirodj, I. M. Sumertajaya, and A. Kurnia, “Analisis Clustering Time Series untuk Pengelompokan Provinsi di Indonesia Berdasarkan Indeks Pembangunan Manusia Jenis Kelamin Perempuan,” Stat. J. Theor. Stat. Its Appl., vol. 23, no. 1, pp. 29–37, 2023, doi: 10.29313/statistika.v23i1.2181.

L. Li and B. A. Prakash, “Time series clustering: Complex is simpler!,” Proc. 28th Int. Conf. Mach. Learn. ICML 2011, pp. 1–8, 2011.

S. U. Wijaya and N. N. Ngatini, “Pengembangan Pemodelan Harga Beras di Wilayah Indonesia Bagian Barat dengan Pendekatan Clustering Time Series,” Limits J. Math. Its Appl., vol. 17, no. 1, p. 51, 2020, doi: 10.12962/limits.v17i1.5994.

P. Esling and C. Agon, “Time-series data mining,” ACM Comput. Surv., vol. 45, no. 1, pp. 12–34, 2012, doi: 10.1145/2379776.2379788.

M. Ulinnuha, F. M Afendi, and I. M. Sumertajaya, “Study of Clustering Time Series Forecasting Model for Provincial Grouping in Indonesia Based on Rice Price,” Indones. J. Stat. Its Appl., vol. 6, no. 1, pp. 50–62, 2022, doi: 10.29244/ijsa.v6i1p50-62.

M. A. Zen, S. Wahyuningsih, and A. T. R. Dani, “Aplikasi Pendekatan Agglomerative Hierarchical Time Series Clustering untuk Peramalan Data Harga Minyak Goreng di Indonesia,” Semin. Nas. Off. Stat., pp. 293–302, 2022, doi: 10.34123/semnasoffstat.v2022i1.1394.

M. Yohansa, K. A. Notodiputro, and E. Erfiani, “Dynamic Time Warping Techniques for Time Series Clustering of Covid-19 Cases in DKI Jakarta,” ComTech Comput. Math. Eng. Appl., vol. 13, no. 2, pp. 63–73, 2022, doi: 10.21512/comtech.v13i2.7413.

J. Paparrizos and L. Gravano, “K-Shape: Efficient and Accurate Clustering of Time Series,” SIGMOD Rec., vol. 45, no. 1, pp. 69–76, 2016, doi: 10.1145/2949741.2949758.

Sahara, F. A. D. Putro, L. A. Putri, and G. Prawira, “Dinamika Pasar Gula Global dan Lokal, Manis atau Pahit?,” fem.ipb.ac.id, 2024. https://fem.ipb.ac.id/index.php/2024/02/12/dinamika-pasar-gula-global-dan-lokal-manis-atau-pahit/ (accessed Sep. 12, 2024).

Damiana, “Harga Gula Makin Tak Terkendali, Hari Ini Pecah Rekor Tembus Rp18.200,” cnbcindonesia.com, 2024. https://www.cnbcindonesia.com/news/20240426131817-4-533734/harga-gula-makin-tak-terkendali-hari-ini-pecah-rekor-tembus-rp18200 (accessed Sep. 12, 2024).

T. Santoso and M. U. Basuki, “Aplikasi Model Garch Pada Data Inflasi Bahan Makanan Indonesia Periode 2005.1- 2010.6,” J. Organ. dan Manaj., vol. 7, no. 1, pp. 38–52, 2011, [Online]. Available: www.bps.go.id,.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2010. Jakarta: Badan Pusat Statistik, 2010.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2011. Jakarta: Badan Pusat Statistik, 2011.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2012. Jakarta: Badan Pusat Statistik, 2012.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2013. Jakarta: Badan Pusat Statistik, 2013.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan (Data 2013). Jakarta: Badan Pusat Statistik, 2014.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2014. Jakarta: Badan Pusat Statistik, 2015.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2015. Jakarta: Badan Pusat Statistik, 2016.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2016. Jakarta: Badan Pusat Statistik, 2017.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2017. Jakarta: Badan Pusat Statistik, 2018.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2018. Jakarta: Badan Pusat Statistik, 2019.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2019. Jakarta: Badan Pusat Statistik, 2020.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2020. Jakarta: Badan Pusat Statistik, 2021.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2021. Jakarta: Badan Pusat Statistik, 2022.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2022. Jakarta: Badan Pusat Statistik, 2023.

Badan Pusat Statistik, Statistik Harga Konsumen Perdesaan Kelompok Makanan 2023. Jakarta: Badan Pusat Statistik, 2024.

A. D. Munthe, “Penerapan Clustering Time Series Untuk Menggerombolkan Provinsi Di Indonesia Berdasarkan Nilai Produksi Padi,” J. Litbang Sukowati Media Penelit. dan Pengemb., vol. 2, no. 2, p. 11, 2019, doi: 10.32630/sukowati.v2i2.61.

D. Astuti, D. Y. Hartanti, S. T. Nurhayanti, and H. Fransiska, “Clustering and Forecasting of Covid-19 Data in Indonesia,” J. Mat. Stat. dan Komputasi, vol. 18, no. 3, pp. 324–335, 2022, doi: 10.20956/j.v18i3.18882.

D. T. Utari and D. S. Hanun, “Hierarchical Clustering Approach for Region Analysis of Contraceptive Users,” EKSAKTA J. Sci. Data Anal., vol. 2, no. 2, pp. 99–108, 2021, doi: 10.20885/eksakta.vol2.iss2.art3.

S. Saraçli, N. Doǧan, and I. Doǧan, “Comparison of hierarchical cluster analysis methods by cophenetic correlation,” J. Inequalities Appl., no. December, pp. 1–8, 2013, doi: 10.1186/1029-242X-2013-203.

Scikit Learn, “Clustering,” https://scikit-learn.org/, 2024. https://scikit-learn.org/stable/modules/clustering.html (accessed Oct. 01, 2024).

M. A. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Averagedan Exponential Smoothinguntuk Sistem Peramalan Pendapatan pada Perusahaan XYZ,” J. Sist. dan Inform., vol. 13, no. 2, pp. 36–45, 2019.

Published
2025-01-16
How to Cite
[1]
F. Amatullah, E. Ilmani, A. Fitrianto, E. Erfiani, and L. Jumansyah, “Clustering Time Series Forecasting Model for Grouping Provinces in Indonesia Based on Granulated Sugar Prices”, JAIC, vol. 9, no. 1, pp. 121-130, Jan. 2025.
Section
Articles