Clustering of Aquaculture Productivity Villages in East Aceh Using the K-Means Algorithm

Authors

  • M. Arif Saputra Arif Universitas Malikussaleh
  • Rozzi Kesuma Dinata Universitas Malikussaleh
  • Yesy Afrillia Universitas Malikussaleh

DOI:

https://doi.org/10.30871/jaic.v9i5.10102

Keywords:

Clustering, Silhouette Score, Aquaculture, K-Means, East Aceh

Abstract

This study aims to classify villages based on the level of pond utilization and to develop a web-based application for categorizing aquaculture areas in East Aceh Regency. In contrast to traditional definitions based on harvest volume, this research defines productivity functionally—whether the pond area is actively managed or abandoned. The dataset consists of 146 villages and includes five primary variables: number of fish farmers, total pond area, number of pond plots, productive pond area, and abandoned pond area. Clustering was conducted using the K-Means algorithm, resulting in two main groups: productive and non-productive villages. Validation through the Silhouette Score revealed that using k = 2 yielded the highest score of 0.7576, indicating the most optimal clustering structure. The analysis showed that 92% of villages were categorized as productive, while 8% fell into the non-productive cluster. These two clusters differ significantly in terms of land utilization ratios and the number of active aquaculture workers. The findings not only offer a more refined spatial insight but also serve as a basis for the Department of Marine Affairs and Fisheries in formulating aquaculture zoning, revitalization programs, and more targeted resource allocation.

Downloads

Download data is not yet available.

References

[1] Rome, The State of World Fisheries and Aquaculture 2022. 2022. doi: 10.4060/cc0461en.

[2] T. Salsabila, N. Nurdin, and S. Retno, “Comparison of K-Medoids and K-Means Result for Regional Clustering of Capture Fisheries in Aceh Province,” Int. J. Eng. Sci. Inf. Technol., vol. 5, no. 2, pp. 282–289, 2025, doi: 10.52088/ijesty.v5i2.829.

[3] N. Yulinar, M. Akmal, I. Zulkarnaen, and ..., “Implementasi Kebijakan Minapolitan di Kabupaten Aceh Timur,” J. Transparansi …, vol. 3, no. 2, pp. 74–79, 2023, [Online]. Available: https://ojs.unimal.ac.id/jtp/article/view/15192%0Ahttps://ojs.unimal.ac.id/jtp/article/download/15192/5967

[4] W. Zam and N. A. Kasim, “Faktor - Faktor yang Mempengaruhi Produktivitas Usaha Budidaya Udang Vaname ( Litopenaeus vannamei ) Di Kabupaten Pangkep Factors Affecting the Productivity of Vaname Shrimp ( Litopenaeus vannamei ) Culture in Pangkep District,” vol. 13, no. 3, pp. 303–310, 2024.

[5] R. Rahmawati, M. Arif, R. Rahayu, and A. Akbardiansyah, “Persepsi Masyarakat Kabupaten Aceh Timur dalam Pengelolaan Ekosistem Mangrove Berkelanjutan Community Perceptions of East Aceh District in Sustainable Management of Mangrove Ecosystem,” J. Kelaut. dan Perikan. Indones., vol. 3, no. 1, pp. 45–58, 2023, [Online]. Available: http://jurnal.usk.ac.id/JKPIhttps://doi.org/10.24815/jkpi.v3i1.31709

[6] S. B. H. Sakur, M. Silangen, and D. Tuwohingide, “Penerapan Algoritma K-Means untuk Klasterisasi Produksi Budidaya Perikanan Provinsi Sulawesi Utara,” J. SAINTEKOM, vol. 14, no. 1, pp. 38–47, 2024, doi: 10.33020/saintekom.v14i1.528.

[7] & B. N. et al. Pria Wibawa Utama, Vincentius P. Siregar, “Klasifikasi Habitat Dasar Berbasis Objek Di Perairan Dangkal Karang Lebar Dan Pulau Lancang,” vol. 15, no. August, pp. 167–184, 2023.

[8] R. K. Dinata, N. Hasdyna, S. Retno, and M. Nurfahmi, “K-means algorithm for clustering system of plant seeds specialization areas in east Aceh,” Ilk. J. Ilm., vol. 13, no. 3, pp. 235–243, 2021, doi: 10.33096/ilkom.v13i3.863.235-243.

[9] R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.

[10] Nurdin, Bustami, Rini Meiyanti, Amalia Fahada, and Marleni, “Application of the K-Means Method for Clustering Capture Fisheries Products in North Aceh with A Data Mining Approach,” J. Adv. Zool., vol. 44, no. 4, pp. 39–49, 2023, doi: 10.17762/jaz.v44i4.1358.

[11] A. W. Fernando, Z. Fatah, I. F. Sains, and U. Ibrahimy, “Jurnal Ilmiah Multidisiplin Nusantara Implementasi Data Mining Dalam Prediksi Penjualan Sembako Menggunakan Metode Apriori Jurnal Ilmiah Multidisiplin Nusantara,” vol. 2, no. November, pp. 124–130, 2024.

[12] N. Nur Afidah, “Penerapan Metode Clustering dengan Algoritma K-means untuk Pengelompokkan Data Migrasi Penduduk Tiap Kecamatan di Kabupaten Rembang,” Prism. Pros. Semin. Nas. Mat., vol. 6, pp. 729–738, 2023, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

[13] V. Alvianatinova, I. Ali, N. Rahaningsih, and A. Bahtiar, “Penerapan Algoritma K-Means Clustering Dalam Pengelompokan Data Penjualan Supermarket Berdasarkan Cabang (Branch),” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1529–1535, 2024, doi: 10.36040/jati.v8i2.8993.

[14] P. P. Allorerung, A. Erna, M. Bagussahrir, and S. Alam, “Analisis Performa Normalisasi Data untuk Klasifikasi K-Nearest Neighbor pada Dataset Penyakit,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 9, no. 3, pp. 178–191, 2024, doi: 10.14421/jiska.2024.9.3.178-191.

[15] M. R. Kusnaidi, T. Gulo, and S. Aripin, “Penerapan Normalisasi Data Dalam Mengelompokkan Data Mahasiswa Dengan Menggunakan Metode K-Means Untuk Menentukan Prioritas Bantuan Uang Kuliah Tunggal,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 330–338, 2022, doi: 10.47065/josyc.v3i4.2112.

[16] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. C, pp. 53–65, 2020, doi: 10.1016/0377-0427(87)90125-7.

Downloads

Published

2025-10-08

How to Cite

[1]
M. A. S. Arif, R. K. Dinata, and Y. Afrillia, “Clustering of Aquaculture Productivity Villages in East Aceh Using the K-Means Algorithm”, JAIC, vol. 9, no. 5, pp. 2382–2390, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.