Performance Comparison of Multilayer Perceptron (MLP) and Random Forest for Early Detection of Cardiovascular Disease

Authors

  • Dita Widayanti Setiawan Study Program Information Technology, Departement Faculty of Engineering, Tadulako University
  • Nouval Trezandy Lapatta Master of Information Technology, Departement Faculty of Engineering, Tadulako University
  • Amriana Amriana Study Program Information Technology, Departement Faculty of Engineering, Tadulako University
  • Deny Wiria Nugraha Study Program Information Technology, Departement Faculty of Engineering, Tadulako University
  • Chairunnisa Ar. Lamasitudju Study Program Information Technology, Departement Faculty of Engineering, Tadulako University

DOI:

https://doi.org/10.30871/jaic.v9i6.10826

Keywords:

Cardiovascular Disease, Early Detection, Multilayer Perceptron, Random Forest, Comparison

Abstract

Cardiovascular disease is a disorder of the heart and blood vessels that can lead to heart attacks, strokes, and heart failure, so early detection is essential. This study compares Multilayer Perceptron (MLP) and Random Forest for risk classification in a Kaggle dataset containing 70,000 samples with balanced targets. Pre-processing included age conversion, outlier cleaning, standardization, and feature selection based on feature importance. Both models were optimized using RandomizedSearchCV and evaluated using accuracy, precision, recall, F1-score, AUC-ROC, confusion matrix, and k-fold cross-validation. The results show that the accuracy of MLP is 73.90% and Random Forest is 74.23% with an AUC of 0.80 for both. Random Forest is more stable across all folds and performs better on the negative class, while MLP is slightly more sensitive to the positive class. Independent t-test and Mann-Whitney U tests show p>0.05, indicating that the difference in performance is not significant. The most influential features were diastolic blood pressure, age, cholesterol, and systolic blood pressure. The non-clinical Streamlit prototype demonstrated the model's potential for education and initial decision support.

Downloads

Download data is not yet available.

References

[1] I. Naryanti, N. Dwi Astuti, M. Hani Baity Jannaty, and P. Kemenkes Semarang, “Literature Review Faktor Determinan Penyakit Kardiovaskuler di Indonesia,” J. Mandalika Lit., vol. 6, no. 1, pp. 2745–5963, 2024.

[2] T. Apriliyani, N. Ainun Oktavia Pusparini, Z. Rohmah, W. Anindito Sri Tunjung, and dan Ardaning Nuriliani, “Mekanisme Penyakit Kardiovaskular Terkait Penuaan (Mechanisms of Cardiovascular Diseases Related to Aging),” Bioma Berk. Ilm. Biol., vol. 26, no. 2, pp. 2598–2370, 2024.

[3] “World Health Organization.”

[4] “World Heart Federation.”

[5] “TATURA.ID.”

[6] dkk Dzulfian Syafrian, “Analisis Struktur Kovarians Indikator Kesehatan pada Lansia di Rumah dengan Fokus pada Persepsi Kesehatan Subjektif,” Sustain., vol. 11, no. 1, pp. 1–14, 2025

[7] I. Wahyuniari, D. Ratnayanti, Mayun, S. Wiryawan, Linawati, and Sugiritama, “Deteksi Dini Dan Penanganan Faktor Risiko Penyakit Kardiovaskular,” vol. 9, no. 2, pp. 72–74, 2007.

[8] R. D. Muhammad, “Prediksi Penyakit Jantung dengan menggunakan Machine Learning Autogluon,” 2024, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/48775

[9] I. Daniel, A. F. Limas Ptr, and A. Ichsan, “Klasifikasi Risiko Penyakit Jantung Dengan Multilayer Perceptron,” Data Sci. Indones., vol. 4, no. 1, pp. 78–82, Sep. 2024, doi: 10.47709/dsi.v4i1.4667.

[10] N. H. Alfajr and S. Defiyanti, “Prediksi Penyakit Jantung Menggunakan Metode Random Forest Dan Penerapan Principal Component Analysis (Pca),” J. Inform. Dan Tek. Elektro Terap., vol. 12, no. 3S1, 2024, doi: 10.23960/jitet.v12i3s1.5055.

[11] Y. Amelia, “Perbandingan Metode Machine Learning Untuk Mendeteksi Penyakit Jantung,” 2023. [Online]. Available: http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

[12] I. Ketut et al., “Implementasi Random Forest pada Klasifikasi Penyakit Kardiovaskular dengan Hyperparameter Tuning Grid Search,” Jnatia, vol. 2, no. 1, pp. 219–226, 2023.

[13] C. Putri and A. Maritza, “Analisis Perbandingan Metode Klasifikasi Menggunakan Regresi Logistik Biner , Random Forest , dan Support Vector Machine pada Cardiovascular Disease Dataset,” Dep. Stat., pp. 1–12, 2019.

[14] Y. E. Windarto, “Analisis Penyakit Kardiovaskular Menggunakan Metode Korelasi Pearson, Spearman Dan Kendall,” J. SAINTEKOM, vol. 10, no. 2, p. 119, 2020, doi: 10.33020/saintekom.v10i2.149.

[15] P. Hidayat, R. Kurniawan, Y. A. Wijaya, and T. Suprapti, “Optimasi Algoritma K-Nearest (Knn) Neighbors Pada Prediksi Risiko Penyakit Kardiovaskular,” J. Inform. Dan Tek. Elektro Terap., vol. 13, no. 1, 2025, doi: 10.23960/jitet.v13i1.5864.

[16] I. Akbar, F. Supriadi, and D. I. Junaedi, “Pemanfaatan machine learning di bidang kesehatan,” vol. 9, no. 1, pp. 1744–1749, 2025.

[17] F. D. Telaumbanua, P. Hulu, T. Z. Nadeak, R. R. Lumbantong, and A. Dharma, “Penggunaan Machine Learning Di Bidang Kesehatan,” J. Teknol. Dan Ilmu Komput. Prima, vol. 2, no. 2, pp. 391–399, 2020, doi: 10.34012/jutikomp.v2i2.657.

[18] A. R. Isnain, H. Sulistiani, B. M. Hurohman, A. Nurkholis, and S. Styawati, “Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen,” J. Edukasi dan Penelit. Inform., vol. 8, no. 2, p. 299, 2022, doi: 10.26418/jp.v8i2.54704.

[19] D. Pardede, B. H. Hayadi, and Iskandar, “Kajian Literatur Multi Layer Perceptron Seberapa Baik Performa Algoritma Ini,” J. Ict Apl. Syst., vol. 1, no. 1, pp. 23–35, 2022, doi: 10.56313/jictas.v1i1.127.

[20] A. Prasetya Wibawa, W. Lestar, A. Bella Putra Utama, I. Tri Saputra, and Z. Nabila Izdihar, “Multilayer Perceptron untuk Prediksi Sessions pada Sebuah Website Journal Elektronik,” Indones. J. Data Sci., vol. 1, no. 3, pp. 57–67, 2020, doi: 10.33096/ijodas.v1i3.15.

[21] I. Firmansyah and B. H. Hayadi, “Komparasi Fungsi Aktivasi Relu Dan Tanh Pada Multilayer Perceptron,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 2, p. 200, 2022, doi: 10.26798/jiko.v6i2.600.

[22] S. H. Gulo and A. H. Lubis, “Penerapan Multi-Layer Perceptron untuk Mengklasifikasi Penduduk Kurang Mampu,” Explorer (Hayward)., vol. 4, no. 2, pp. 51–59, 2024.

[23] M. Wahyuni, “Klasifikasi Penyakit Daun Tomat dengan Perbandingan Fungsi Aktivasi Multi Layer Perceptron,” vol. 13, pp. 1988–1998, 2024.

[24] S. Sen, D. Sugiarto, and A. Rochman, “Prediksi Harga Beras Menggunakan Metode Multilayer Perceptron (MLP) dan Long Short Term Memory (LSTM),” Ultim. J. Tek. Inform., vol. 12, no. 1, pp. 35–41, 2020, doi: 10.31937/ti.v12i1.1572.

[25] N. K. C. PRATIWI, N. IBRAHIM, and S. SAIDAH, “Prediksi Kanker Paru menggunakan Grid search untuk Optimasi Hyperparameter pada Algoritma MLP dan Logistic Regression,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomün. Tek. Elektron., vol. 12, no. 3, p. 556, 2024, doi: 10.26760/elkomika.v12i3.556.

[26] D. H. Depari, Y. Widiastiwi, and M. M. Santoni, “Perbandingan Model Decision Tree, Naive Bayes dan Random Forest untuk Prediksi Klasifikasi Penyakit Jantung,” Inform. J. Ilmu Komput., vol. 18, no. 3, p. 239, 2022, doi: 10.52958/iftk.v18i3.4694.

[27] D. Sudrajat, A. I. Purnamasari, A. R. Dikananda, D. A. Kurnia, and A. Bahtiar, “Klasifikasi Mutu Pembelajaran Hybrid berdasarkan Algoritma C.45, Random Forest dan Naïve Bayes dengan Optimasi Bootsrap Areggating (Bagging) pada masa COVID-19,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 6, p. 2227, 2022, doi: 10.30865/jurikom.v9i6.5179.

[28] G. Ashari Rakhmat and W. Mutohar, “MIND (Multimedia Artificial Intelligent Networking Database Prakiraan Hujan menggunakan Metode Random Forest dan Cross Validation,” J. MIND J. | ISSN, vol. 8, no. 2, pp. 173–187, 2023, [Online]. Available: https://doi.org/10.26760/mindjournal.v8i2.173-187

[29] G. Arther Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” Cogito Smart J. |, vol. 6, no. 2, pp. 167–178, 2020.

[30] T. Latifah and G. D. Anggitha, “Implementasi Metode Random Forest , KNN ( K-Nearest Neighbour ), Decision Tre e Classification menggunakan Machine Learning untuk Stroke Prediction,” pp. 1–18.

[31] B. H. Mahendra, Adiwijaya, and U. N. Wisesty, “Kategorisasi Berita Multi-Label Berbahasa Indonesia Menggunakan Algoritma Random Forest,” e-Proceeding Eng., vol. 6, no. 2, pp. 9030–9041, 2019.

[32] R. Hidayat et al., “Implementasi Algoritma Random Forest Regression Untuk Memprediksi Penjualan Produk Di Supermarket,” vol. 10, no. 1, pp. 101–109, 2025.

[33] A. Rasyid, A. B. Muharam, and A. Solichin, “Prediksi harga saham syariah indonesia berdasarkan analisis fundamental, teknikal dan bandarmology menggunakan metode random forest,” vol. 10, no. 2, pp. 1663–1677, 2025.

[34] A. M. A. Rahim, Inggrid Yanuar Risca Pratiwi, and Muhammad Ainul Fikri, “Klasifikasi Penyakit Jantung Menggunakan Metode Synthetic Minority Over-Sampling Technique Dan Random Forest Clasifier,” Indones. J. Comput. Sci., vol. 12, no. 5, pp. 2995–3011, 2023, doi: 10.33022/ijcs.v12i5.3413.

[35] G. Royong, “MELALUI SKRINING TRIGLISERIDA PADA USIA PRODUKTIF,” pp. 150–156, 2025.

[36] J. Barat, "Article History:" no. April, 2025.

[37] Mk. dr Fika Tri Anggraini, dr Novi Aryanti, M. Dian Paramita Kartikasari, S. apt Wahyu Hendrarti, and Mk. Wa Ode Rahmadania, Penyakit Kardiovaskuler Penerbit Cv.Eureka Media Aksara. 2024.

[38] D. Nurina Hafila, K. Wisudawan, S. Darma, and Dahlia, “Fakumi Medical Journal Prevalensi Penyakit Kardiovaskular pada Masa Pandemic Tahun 2020-2021 di RS Arifin Nu’mang Kabupaten Sidrap,” vol. 3, no. 10, pp. 710–719, 2023.

[39] R. Efendi, A. Junaidi, and A. M. Rizki, “Penentuan Pusat Klaster Secara Otomatis Pada Algoritma Density Peaks Clustering Berbasis Metode Inter Quartile Range,” J. Inform. Dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4997.

[40] D. N. Handayani and S. Qutub, “Penerapan Random Forest Untuk Prediksi Dan Analisis Kemiskinan,” RIGGS J. Artif. Intell. Digit. Bus., vol. 4, no. 2, pp. 405–412, 2025, doi: 10.31004/riggs.v4i2.512.

[41] R. R. Hallan and I. N. Fajri, “Prediksi Harga Rumah menggunakan Machine Learning Algoritma Regresi Linier,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 7, no. 1, pp. 57–62, 2025, doi: 10.47233/jteksis.v7i1.1732.

[42] M. A. Abubakar, M. Muliadi, A. Farmadi, R. Herteno, and R. Ramadhani, “Random Forest Dengan Random Search Terhadap Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung,” J. Inform., vol. 10, no. 1, pp. 13–18, 2023, doi: 10.31294/inf.v10i1.14531.

[43] A. Sentimen, P. Terhadap, and P. Iphone, “Analisis sentimen publik terhadap penjualan iphone 16 dan kebijakan tkdn di indonesia,” vol. 11, no. 1, pp. 73–80, 2025.

[44] W. A. Aziz, Implementasi metode random forest pada klasifikasi data ulasan konsumen perusahaan (studi kasus: aplikasi kai access). 2021.

[45] Y. Mulia, “Perbandingan Metode Machine Learning Untuk Mendeteksi Penyakit Jantung,” pp. 1–23, 2016.

Downloads

Published

2025-12-05

How to Cite

[1]
D. W. Setiawan, N. T. Lapatta, A. Amriana, D. W. Nugraha, and C. A. Lamasitudju, “Performance Comparison of Multilayer Perceptron (MLP) and Random Forest for Early Detection of Cardiovascular Disease”, JAIC, vol. 9, no. 6, pp. 3012–3024, Dec. 2025.

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.