Optimization of Random Forest Algorithm with Backward Elimination Method in Classification of Academic Stress Levels

Authors

  • Salsabila Dani Amalia Teknik Informatika, Universitas Nahdlatul Ulama Sunan Giri
  • Mula Agung Barata Teknik Informatika, Universitas Nahdlatul Ulama Sunan Giri
  • Pelangi Eka Yuwita Teknik Mesin, Universitas Nahdlatul Ulama Sunan Giri

DOI:

https://doi.org/10.30871/jaic.v9i3.9280

Keywords:

Academic stress, Classification, Random Forest, Backward Elimination

Abstract

Stress is a phenomenon experienced by all individuals as a natural response to pressure, which can impact mental and physical health. In an academic setting, the stress experienced by students is known as academic stress, which can affect their performance and mental well-being. Therefore, there is a need for effective prediction methods to aid in the management and prevention of academic stress. Therefore, there is a need to predict the level of academic stress to aid more effective management and prevention. This study uses a public dataset categorized based on the Student-life Stress Inventory (SSI), which includes psychological, physiological, social, environmental, and academic factors. Data mining is often used to detect diseases, one of which is the Random Forest algorithm. The Random Forest algorithm is applied as a classification technique for academic stress levels, with optimization using the Backward Elimination method for feature selection to improve model accuracy. The results showed that the accuracy of the Random Forest algorithm without feature selection obtained an accuracy of 86%, compared to the random forest algorithm with feature selection using the Backward Elimination method obtained a higher accuracy of 88%. This increase shows that the feature selection method can optimize model performance by selecting more relevant features. Thus, this research is expected to contribute to the management of student academic stress against the risk of academic stress.

Downloads

Download data is not yet available.

References

[1] S. Samarpita, R. Satpathy, P. K. Mishra, and A. N. Panda, “Mental Stress Classification from Brain Signals using MLP Classifier,” EAI Endorsed Trans. Pervasive Heal. Technol., vol. 9, no. 1, pp. 1–6, 2023, doi: 10.4108/eetpht.9.4341.

[2] K.Kesehatan, “Apa Itu Stres: Gejala, Penyebab, Pencegahan dan Pengobatan,” 2024. https://ayosehat.kemkes.go.id/apa-itu-stres

[3] P. D. Ambarwati, S. S. Pinilih, and R. T. Astuti, “Gambaran Tingkat Stres Mahasiswa,” J. Keperawatan Jiwa, vol. 5, no. 1, p. 40, 2019, doi: 10.26714/jkj.5.1.2017.40-47.

[4] D. D. W. Sari and W. Marsisno, “Klasifikasi Tingkat Stres Akademik dan Gambaran Mekanisme Koping Mahasiswa,” Semin. Nas. Off. Stat., vol. 2023, no. 1, pp. 203–212, 2023, doi: 10.34123/semnasoffstat.v2023i1.1691.

[5] H. B and R. Hamzah, “Faktor-Faktor Yang Berhubungan Dengan Tingkat Stres Akademik Pada Mahasiswa Stikes Graha Medika,” Indones. J. Heal. Sci., vol. 4, no. 2, p. 59, 2020, doi: 10.24269/ijhs.v4i2.2641.

[6] Afif Januar Ginata, Ratna Dewi Indi Astuti, and Julia Hartati, “Tingkat Stres Berdasarkan Jenis Stresor Pada Mahasiswa Tingkat Akhir Tahap Akademik Fakultas Kedokteran Unisba,” J. Ris. Kedokt., pp. 25–30, 2023, doi: 10.29313/jrk.vi.1915.

[7] P. H. Khrismadani, N. K. A. Sawitri, and P. O. Y. Nurhesti, “Gambaran Tingkat Stres Mahasiswa Keperawatan Universitas Udayana Dalam Proses Pembelajaran Selama Pandemi Covid-19,” Coping Community Publ. Nurs., vol. 10, no. 2, p. 166, 2022, doi: 10.24843/coping.2022.v10.i02.p07.

[8] W. Gamayanti, M. Mahardianisa, and I. Syafei, “Self Disclosure dan Tingkat Stres pada Mahasiswa yang sedang Mengerjakan Skripsi,” Psympathic J. Ilm. Psikol., vol. 5, no. 1, pp. 115–130, 2018, doi: 10.15575/psy.v5i1.2282.

[9] A. I. Noor Mahmudianti, Muhammad Riduansyah, “Journal of Health,” vol. 10, no. 1, pp. 47–54, 2024.

[10] M. A. Barata et al., “Perancangan Sistem Electronic Nose Berbasis,” pp. 117–126, 2016.

[11] E. R. B. Sebayang, Y. H. Chrisnanto, and Melina, “Klasifikasi Data Kesehatan Mental di Industri Teknologi Menggunakan Algoritma Random Forest,” IJESPG J., vol. 1, no. 3, pp. 237–253, 2023.

[12] E. S. Mohamed, T. A. Naqishbandi, S. A. C. Bukhari, I. Rauf, V. Sawrikar, and A. Hussain, “A hybrid mental health prediction model using Support Vector Machine, Multilayer Perceptron, and Random Forest algorithms,” Healthc. Anal., vol. 3, no. July 2022, p. 100185, 2023, doi: 10.1016/j.health.2023.100185.

[13] M. R. Fanani, “Algoritma Naïve Bayes Berbasis Forward Selection Untuk Prediksi Bimbingan Konseling Siswa,” J. DISPROTEK, vol. 11, no. 1, pp. 13–22, 2020, doi: 10.34001/jdpt.v11i1.952.

[14] C. Cahyaningtyas, D. Manongga, and I. Sembiring, “Algorithm Comparison and Feature Selection for Classification of Broiler Chicken Harvest,” J. Tek. Inform., vol. 3, no. 6, pp. 1717–1727, 2022, doi: 10.20884/1.jutif.2022.3.6.493.

[15] Chhabii, “Student Stress Factors: A Comprehensive Analysis,” kaggle.com, 2022. https://www.kaggle.com/datasets/rxnach/student-stress-factors-a-comprehensive-analysis/data

[16] N. N. Sholihah and A. Hermawan, “Implementation of Random Forest and Smote Methods for Economic Status Classification in Cirebon City,” J. Tek. Inform., vol. 4, no. 6, pp. 1387–1397, 2023, doi: 10.52436/1.jutif.2023.4.6.1135.

[17] D. Papakyriakou and I. S. Barbounakis, “Data Mining Methods: A Review,” Int. J. Comput. Appl., vol. 183, no. 48, pp. 5–19, 2022, doi: 10.5120/ijca2022921884.

[18] Y. APRILLIA, “Implementasi Algoritma Naive Bayes Dengan Feature Selection Backward Elimination Dalam Pengklasifikasian Status Penderita Stunting Pada Balita,” vol. 4, pp. 1–6, 2023.

[19] H. Nugroho, G. E. Yuliastuti, and A. Firman, “Klasifikasi Diagnosis Diabetes Melitus Menggunakan Metode Naïve Bayes Dengan Seleksi Fitur Backward Elimination,” J. Ilm. NERO, vol. 8, no. 2, p. 2023, 2023.

Downloads

Published

2025-06-03

How to Cite

[1]
S. D. Amalia, M. A. Barata, and P. E. Yuwita, “Optimization of Random Forest Algorithm with Backward Elimination Method in Classification of Academic Stress Levels”, JAIC, vol. 9, no. 3, pp. 633–641, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.