Prediction of Tuberculosis Treatment Outcomes in Indonesia Using Support Vector Machine and Random Forest

Authors

  • Joko Triloka Institut Informatika Dan Bisnis Darmajaya
  • Dian Sugianto Institut Informatika Dan Bisnis Darmajaya

DOI:

https://doi.org/10.30871/jaic.v9i5.10018

Keywords:

Tuberculosis, Support Vector Machine, Random Forest, Recovery Prediction, Machine Learning

Abstract

Tuberculosis (TB) remains a global health challenge, particularly in developing countries such as Indonesia, which ranks third worldwide in the number of TB cases. This study aims to evaluate the performance of Support Vector Machine (SVM) and Random Forest (RF) algorithms in predicting TB patient recovery rates based on clinical data obtained from healthcare facilities in Indonesia. Evaluation results indicate that the model achieved very high precision scores (100%) for the "Deceased," "Transferred," and "Default" categories; however, these findings require critical interpretation due to the likely class imbalance in those categories. In contrast, for the "Recovered" and "Completed" categories—where data instances were more numerous—the model exhibited lower precision and recall values (below 90%), reflecting challenges in accurately predicting majority classes. These results suggest that despite seemingly high numerical performance, model predictions can be biased if class distribution is not appropriately considered. The main contribution of this research lies in providing a comparative analysis of two widely used machine learning algorithms in predicting TB recovery outcomes, while emphasizing the importance of addressing data imbalance issues in clinical predictive modeling. The findings provide a practical basis for integrating predictive algorithms into clinical workflows, enabling more accurate monitoring of patient recovery and timely adjustments of TB treatment plans in Indonesia.

Downloads

Download data is not yet available.

Author Biography

Dian Sugianto, Institut Informatika Dan Bisnis Darmajaya

Fakultas Ilmu Komputer, Institut Informatika Dan Bisnis Darmajaya, Lampung

References

[1] A. C. Kurniawan, A. Salam, “Seleksi Fitur Information Gain untuk Optimasi Klasifikasi Penyakit Tuberkulosis”, J. Media Inform. Budidarma, vol. 8, no. 1, p. 70, 2024, doi: 10.30865/mib.v8i1.7122.

[2] R. Melati N, T. Waluyo Purboyo, M. Kalista, “Prediksi Penderita Tuberkulosis Menggunakan Algoritma Support Vector Regression (SVR)”, e-Proceeding Eng., vol. 10, no. 1, pp. 736–741, 2023.

[3] A. N. Dita, D. M. Nadia, S. Toha, Suliyanto, "Modeling the Percentage of Tuberculosis Cure in Indonesia Using a Multivariate Adaptive Regression Spline Approach", Inferensi, vol.7 no.2. pp. 91-97, 2024.

[4] S. Maren, E et al. “Developing prediction models for clinical use using logistic regression: an overview.” Journal of thoracic disease vol. 11, Suppl 4: S574-S584, 2019. doi:10.21037/jtd.2019.01.25

[5] I. Madakkatel, A. Zhou, M. D. McDonnell et al., "Combining machine learning and conventional statistical approaches for risk factor discovery in a large cohort study", Sci Rep 11, 22997, 2021. https://doi.org/10.1038/s41598-021-02476-9

[6] S. Deepti, B. Pronaya, A. Verma et al., "Explainable AI for Healthcare 5.0: Opportunities and Challenges", IEEE Access. 1-30, 2022. 10.1109/ACCESS.2022.3197671.

[7] R. Rusdah and B. A. Bregastantyo, “Model Prognosis Masa Pengobatan Pasien Tuberkulosis Dengan Metode C4.5,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 6, pp. 1197–1204, 2023, doi: 10.25126/jtiik.1067393.

[8] K. Deny, W. Mochamad, P. Lise et al. “Deteksi dan Prediksi Cerdas Penyakit Paru-Paru dengan Algoritma Random Forest”. Indonesian Journal Computer Science. 3. 51-56. 2024. 10.31294/ijcs.v3i1.6071

[9] A. Christian, H. Hariyanto, A. Yani, S. Sumanto, “Analisis Machine Learning Untuk Prediksi Penyakit Paru-Paru Menggunakan Random Forest”. Journal of Innovation and Future Technology (IFTECH), 7(1), 122-133.2025. https://doi.org/10.47080/iftech.v7i1.3906

[10] L. Rangga A. T, D. Dahlan, “Optimalisasi Fitur Dengan Forward Selection Pada Estimasi Tingkat Penyakit Paru-Paru Menggunakan Algoritma Klasifikasi Random Forest, JATI, Vol. 8 No. 5, 2024. https://doi.org/10.36040/jati.v8i5.11064

[11] E. Priyono, “Prediction of Tuberculosis Patients With Machine Learning Algorithms", J. Ilm. Penelit. dan Pembelajaran Inform., vol.9, no.4, 2024. https://doi.org/10.29100/jipi.v9i4.5486

[12] B. S. C. Putra, I. Tahyudin, B. A. Kusuma, K. N. Isnaini, “Efektivitas Algoritma Random Forest, XGBoost , dan Logistic Regression dalam Prediksi Penyakit Paru-paru”, Techno.Com, 23(4), 909–922, 2024.

[13] M. Andani, J. Triloka, S. Y. Irianto, H. W. Nugroho, “Comparison of K-Nearest Neighbor, Naive Bayes, Random Forest Algorithms for Obesity Prediction”, Sinkron: Jurnal Dan Penelitian Teknik Informatika, 9(1), 502-510, 2025. https://doi.org/10.33395/sinkron.v9i1.14478

[14] T. M. Prasetyo, A. Amrullah, S. Syahrir, B. N. Sari, “Implementasi Algoritma SVM (Support Vector Machine) Dalam Klasifikasi Penyakit Paru-Paru Berdasarkan Fitur Pola Bentuk”, Jurnal Teknologi Informasi, 6(1), 1–6, 2022

[15] A. Sandika, F. R. Ramadhan, I. N. Iman, J. Jihad, “Optimasi Prediksi Penyakit Paru-Paru dan Kanker Paru melalui Integrasi Algoritma Random Forest”, Buletin Ilmiah Ilmu Komputer dan Multimedia (BIIKMA), vol. 2, no. 3, 585–591, 2024.

[16] S. S. SH, R. R, J. Partha Sarathy, G. Kishore, S. S and B. Jegajothi, "Ensemble-based Deep Learning Framework for Tuberculosis Detection in Radiographs," 2025 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2025, pp. 1363-1371, doi: 10.1109/ICEARS64219.2025.10940231.

[17] V. Balakrishnan, G. Ramanathan, S. Zhou,. et al. Optimized support vector regression predicting treatment duration among tuberculosis patients in Malaysia. Multimed Tools Appl 83, 11831–11844 (2024). https://doi.org/10.1007/s11042-023-16028-y

[18] N. Nurfadilla, M. Afdal, I. Permana, and Z. Zarnelly, “Comparison of Data Mining Algorithm for Clustering Patient Data Human Infectious Diseases,” J. Tek. Inform., vol. 4, no. 5, pp. 1127–1134, 2023, doi: 10.52436/1.jutif.2023.4.5.983.

[19] P. N. Isnaeni, H. Rakhmawati, F. A. Tyas, S. Muhammadiyah, and P. Brebes, “Perbandingan Algoritma Naïve Bayes Dan C4.5 Pada Klasifikasi Penyakit Tuberculosis,” J. Informatics Comput., vol. 3, no. 1, pp. 41–48, 2024.

[20] H. Saiyar, “Aplikasi Diagnosa Penyakit Tuberculosis Menggunakan Algoritma Naive Bayes,” Jurikom), vol. 5, no. 5, pp. 498–502, 2018, [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/jurikom%7CPage%7C498

[21] E. Mutiara, “Algoritma Klasifikasi Naive Bayes Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Tuberculosis (Tb),” Swabumi, vol. 8, no. 1, pp. 46–58, 2020, doi: 10.31294/swabumi.v8i1.7668

Downloads

Published

2025-10-09

How to Cite

[1]
J. Triloka and D. Sugianto, “Prediction of Tuberculosis Treatment Outcomes in Indonesia Using Support Vector Machine and Random Forest”, JAIC, vol. 9, no. 5, pp. 2478–2485, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.