Penggunaan Perangkat Lunak Energy2D dalam Mempelajari Konduktivitas Panas Pada Plastik

  • Budiana Budiana Politeknik Negeri Batam
  • Rifaldi Dwi Priana Politeknik Negeri Batam
  • Xena Mutiara Sinurat Politeknik Negeri Batam
  • Canderif Amsal Oloan Silaban Politeknik Negeri Batam
Keywords: Energi2D, heat conductivity, plastik


Plastic is one type of material that has certain characteristics against heat. One of the characteristics of plastics that can be studied is thermal conductivity. Thermal conductivity is the ability of a material to conduct heat within a certain period of time and at a certain thickness. The thermal conductivity of plastics can be studied using Energy2D. The types of plastics used in this study consisted of polypropylene, polystyrene, HDPE, LDPE and PET while the thickness used varied from 1 cm to 9 cm. Based on the simulation, the type of polypropylene plastic has the lowest curve when compared to all the materials used. The time it takes for the outside (source) temperature to equal the room temperature after passing through the polypropylene is (> 40 hours). Apart from that, the time it takes for the outside temperature to be equal to the indoor temperature will be longer if the polypropylene used is getting thicker. This can be seen for the thickness of polypropylene with a thickness of 9 cm which takes time (> 60 hours).


Download data is not yet available.


S. Yadav dan S. Gangwar, “An Overview on Recent progresses and future perspective of biomaterials,” 2011, doi: 10.1088/1757-899X/404/1/012013.

M. Sohail et al., “Natural and synthetic polymerbased smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects,” Drug Delivery and Translational Research, vol. 9, no. 2. Springer Verlag, hal. 595–614, Apr 15, 2019, doi: 10.1007/s13346-018-0512-x.

Y. A. Hidayat, S. Kiranamahsa, dan M. A. Zamal, “A study of plastic waste management effectiveness in Indonesia industries,” AIMS Energy, vol. 7, no. 3, hal. 350–370, 2019, doi: 10.3934/ENERGY.2019.3.350.

M. B. Al Rayaan, “Recent advancements of thermochemical conversion of plastic waste to biofuel-A review,” Clean. Eng. Technol., vol. 2, hal. 100062, Jun 2021, doi: 10.1016/j.clet.2021.100062.

S. R. Nasution, D. Rahmalina, B. Sulaksono, dan C. O. Doaly, “IbM: PEMANFAATAN LIMBAH PLASTIK SEBAGAI KERAJINAN TANGAN DI KELURAHAN SRENGSENG SAWAH JAGAKARSA JAKARTA SELATAN,” J. Ilm. Tek. Ind., vol. 6, no. 2, Jun 2019, doi: 10.24912/jitiuntar.v6i2.4119.

H. Naghawi et al., “Plastic Waste Utilization as Asphalt Binder Modifier in Asphalt Concrete Pavement,” undefined, 2018.

S. Das dan S. Das, “Properties for Polymer, Metal and Ceramic Based Composite Materials,” in Reference Module in Materials Science and Materials Engineering, Elsevier, 2021.

A. Poonyakan, M. Rachakornkij, M. Wecharatana, dan W. Smittakorn, “Potential use of plastic wastes for low thermal conductivity concrete,” Materials (Basel)., vol. 11, no. 10, Okt 2018, doi: 10.3390/ma11101938.

S. S. Alrwashdeh, “Modelling of operating conditions of conduction heat transfer mode using energy 2D simulation,” Int. J. Online Eng., vol. 14, no. 9, hal. 200–207, 2018, doi: 10.3991/ijoe.v14i09.9116.

C. Huang, X. Qian, dan R. Yang, “Thermal conductivity of polymers and polymer nanocomposites,” Materials Science and Engineering R: Reports, vol. 132. Elsevier Ltd, hal. 1–22, Okt 01, 2018, doi: 10.1016/j.mser.2018.06.002.

Y. P. Mamunya, V. V. Davydenko, P. Pissis, dan E. V. Lebedev, “Electrical and thermal conductivity of polymers filled with metal powders,” Eur. Polym. J., vol. 38, no. 9, hal. 1887–1897, Sep 2002, doi: 10.1016/S0014-3057(02)00064-2.

C. Xie, “Interactive Heat Transfer Simulations for Everyone,” Phys. Teach., vol. 50, no. 4, hal. 237–240, Apr 2012, doi: 10.1119/1.3694080.

F. Landriscina, “An Introduction to Simulation for Learning,” in Simulation and Learning, Springer New York, 2013, hal. 1–12.

J. Tu, G. H. Yeoh, dan C. Liu, Computational Fluid Dynamics. Elsevier Ltd, 2013


Most read articles by the same author(s)