Klasifikasi Wajah Manusia Menggunakan Multi Layer Perceptron
Abstract
The problem of data security at a time when it is needed in the world of technology. The use of biometrics as data security is very necessary. This study aims to detect human biometrics using the Kinect sensor. The biometric that is detected is the face. The face image is captured by the Kinect sensor. For data feature extraction using Gray Level Co-Occurrence Matrix (GLCM. The parameters used are Contrast, Energy, Homogenity, and Correlation. The data obtained will be classified using Multi Layer Perceptron. Face classification is based on race. There are 3 races studied namely Indonesian, Chinese and African Native Races. The total data used are 100 photos of faces. The classification results show an accuracy of 86.7% using Multi Layer Perceptron
Downloads
References
A. Ross and A. K. Jain, “Human recognition using biometrics: An overview,” Ann. des Telecommun. Telecommun., vol. 62, no. 1–2, pp. 11–35, 2007, doi: 10.1007/bf03253248.
A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino, “2D and 3D face recognition: A survey,” Pattern Recognit. Lett., vol. 28, no. 14, pp. 1885–1906, 2007, doi: 10.1016/j.patrec.2006.12.018.
J. Sun, Y. Wang, and J. Li, “Gait Recognition,” Motion Track. Gesture Recognit., 2017, doi: 10.5772/68119.
B. Y. L. Li, A. S. Mian, W. Liu, and A. Krishna, “Face recognition based on Kinect,” Pattern Anal. Appl., vol. 19, no. 4, pp. 977–987, 2016, doi: 10.1007/s10044-015-0456-4.
A. Ahmad Hania, “Mengenal Artificial Intelligence, Machine Learning, & Deep Learning,” J. Teknol. Indones., vol. 1, no. June, pp. 1–6, 2017.
A. Jefiza, “Sistem Pendeteksi Jatuh Berbasis Sensor Gyroscope Dan Sensor Accelerometer,” Sist. Pendeteksi Jatuh Berbas. Sens. Gyroscope Dan Sens. Accelerom., vol. 87, p. 111, 2017.
T. Wijanarko and A. Putra, “PROBABILISTIK Tesis untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-2 Program Studi Magister Sistem Informasi PROGRAM PASCASARJANA,” pp. 1–53, 2013.