Public Opinion on The MBG Program: Comparative Evaluation of InSet and VADER Lexicon Labeling Using SVM on Platform X

Authors

  • Na'ilah Puti Zakiyah UIN Walisongo Semarang
  • Khothibul Umam UIN Walisongo Semarang
  • Adzhal Arwani Mahfudh UIN Walisongo Semarang

DOI:

https://doi.org/10.30871/jaic.v9i6.9978

Keywords:

Sentiment Analysis, InSet Lexicon, Makan Bergizi Gratis (MBG), Support Vector Machine, VADER Lexicon

Abstract

This study aims to examine public opinion regarding the MBG program on platform X by utilizing the Support Vector Machine (SVM) algorithm using two sentiment labeling methods, namely InSet Lexicon and VADER Lexicon. The data was then divided into 70% for training and 30% for testing, and extracted using Term Frequency–Inverse Document Frequency (TF-IDF) to convert the text into numerical representations. The SVM model was trained on both labeled data sets to compare their performance based on evaluation metrics such as accuracy, precision, recall, and F1 score. The results show that labeling with VADER produces a more dominant number of neutral sentiments, while InSet Lexicon produces a more balanced distribution between positive, negative, and neutral sentiments. At the modeling stage, SVM with InSet labels achieved an accuracy of 80.10%, with precision of 0.81, recall of 0.80, and an F1 score of 0.79. Meanwhile, SVM with VADER labels achieved an accuracy of 93.83%, precision of 0.94, recall of 0.94, and an F1 score of 0.93. Although VADER showed higher accuracy values, InSet Lexicon is considered more efficient and relevant for sentiment analysis in Indonesia because it is capable of producing more balanced and contextual classifications.

Downloads

Download data is not yet available.

References

[1] G. D’Aniello, M. Gaeta, and I. La Rocca, KnowMIS-ABSA: an overview and a reference model for applications of sentiment analysis and aspect-based sentiment analysis, vol. 55, no. 7. Springer Netherlands, 2022. doi: 10.1007/s10462-021-10134-9.

[2] F. Aftab et al., “A Comprehensive Survey on Sentiment Analysis Techniques,” Int. J. Technol., vol. 14, no. 6, pp. 1288–1298, 2023, doi: 10.14716/ijtech.v14i6.6632.

[3] H. Firda et al., “Perbandingan Pelabelan Rating - based dan Inset Lexicon - based dalam Analisis Sentimen Menggunakan SVM ( Studi Kasus : Ulasan Aplikasi GoBiz di Google Play Store ) Comparison of Rating - based and Inset Lexicon - based Labeling in Sentiment Analysis usin,” vol. 14, pp. 516–528, 2025.

[4] M. Gultom, J. Marikros, W. Rusli, and V. C. Mawardi, “Penerapan Vader Sentiment untuk Mendeteksi Sentimen Bahasa Inggris berbasis Website,” Semin. Nas. Penelit. (SEMNAS CORISINDO 2024), pp. 13–18, 2024, [Online]. Available: http://corisindo.utb-univ.ac.id/index.php/penelitian/article/view/9

[5] Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, and Andreas Nugroho Sihananto, “Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM,” Modem J. Inform. dan Sains Teknol., vol. 2, no. 3, pp. 62–76, 2024, doi: 10.62951/modem.v2i3.112.

[6] D. Musfiroh, U. Khaira, P. E. P. Utomo, and T. Suratno, “Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 24–33, 2021, doi: 10.57152/malcom.v1i1.20.

[7] N. Giovanni, M. M. Olivia Pangaribuan, A. Mulyono, and Z. Muttaqin, “Analisis Sentimen Menggunakan Metode Vader, Sentiart dan Analisis Tematik pada Akun Instagram Pecinta Hewan Peliharaan,” J. Manaj. Pendidik. Dan Ilmu Sos., vol. 6, no. 1, pp. 426–443, 2024, doi: 10.38035/jmpis.v6i1.3425.

[8] A. Rufaida, A. Permanasari, and N. Setiawan, “Lexicon-Based Sentiment Analysis Using Inset Dictionary: A Systematic Literature Review,” 2023, doi: 10.4108/eai.5-10-2022.2327474.

[9] Heti Aprilianti, Khothibul Umam, and Maya Rini Handayani, “Comparative Study of SVM, KNN, and Naïve Bayes for Sentiment Analysis of Religious Application Reviews,” J. Appl. Informatics Comput., vol. 9, no. 3, pp. 920–927, 2025, doi: 10.30871/jaic.v9i3.9482.

[10] J. Wilson and C. Hernández-Hall, “Octava Conferencia Internacional AAAI sobre Weblogs y Redes Sociales,” Eighth Int. AAAI Conf. Weblogs Soc. Media, p. 18, 2014, [Online]. Available: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewPaper/8109

[11] Ahmad Taufik Nursal, “Battle of Sentiment Lexicons: Wordnet, Sentiwordnet, Textblob and Vader in Web Forum Analysis,” J. Inf. Syst. Eng. Manag., vol. 10, no. 2s, pp. 84–93, 2025, doi: 10.52783/jisem.v10i2s.203.

[12] A. Okta, K. Adi, A. Sanjaya, A. B. Setiawan, and P. Korespondens, “Penerapan Inset Lexicon untuk Analisis Sentimen Penonton Video JKT48 di YouTube 1*,” Inotek, vol. 9, p. 1276, 2025.

[13] R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 1, p. 62, 2022, doi: 10.30865/jurikom.v9i1.3793.

[14] M. Kusairi and S. Agustioan, “11531-Article Text-43685-1-10-20221130,” J. Teknol. Inf. dan Komun., vol. 13, no. 2, pp. 140–150, 2002.

[15] D. Sabrina, A. D. Sabilla, N. Azizah, and * Korespondensi, “Kombinasi Vader Lexicon Dan Support Vector Machine Untuk Klasifikasi Sentimen Komentar Aplikasi Blu Bca,” Inser. Inf. Syst. Emerg. Technol. J., vol. 6, no. 1, pp. 22–33, 2025.

[16] M. Apriliyani, “Implementasi analisis sentimen pada ulasan aplikasi Duolingo di Google Playstore menggunakan algoritma Naïve Bayes,” AITI, vol. 21, no. Analysis Sentiment, p. 14, 2024.

[17] Rahayu deny danar dan alvi furwanti Alwie, A. B. Prasetio, R. Andespa, P. N. Lhokseumawe, and K. Pengantar, “Analisis Sentimen Ulasan Aplikasi M-Paspor Menggunakan Naive Bayes Dan Support Vector Machine,” J. Ekon. Vol. 18, Nomor 1 Maret201, vol. 2, no. 1, pp. 41–49, 2020.

[18] R. Firdaus, I. Asror, and A. Herdiani, “Lexicon-Based Sentiment Analysis of Indonesian Language Student Feedback Evaluation,” Indones. J. Comput., vol. 6, no. 1, pp. 1–12, 2021, doi: 10.34818/indojc.2021.6.1.408.

Downloads

Published

2025-12-17

How to Cite

[1]
N. P. Zakiyah, K. Umam, and A. A. Mahfudh, “Public Opinion on The MBG Program: Comparative Evaluation of InSet and VADER Lexicon Labeling Using SVM on Platform X”, JAIC, vol. 9, no. 6, pp. 3937–3944, Dec. 2025.

Most read articles by the same author(s)

Similar Articles

<< < 35 36 37 38 > >> 

You may also start an advanced similarity search for this article.