Determining Eligibility for Smart Indonesia Program (PIP) Recipients Using the Backpropagation Method

Authors

  • Ghinni Rizkya Department of Informatics, Universitas Malikussaleh
  • Nurdin Nurdin Department of Information Technology, Universitas Malikussaleh
  • Rini Meiyanti Department of Informatics, Universitas Malikussaleh

DOI:

https://doi.org/10.30871/jaic.v9i4.9733

Keywords:

Backpropagation Neural Network, Classification, Smart Indonesia Program (PIP), Eligibility, Data Mining

Abstract

The government provides financial assistance, educational opportunities, and expands access for students from poor or vulnerable families through the Smart Indonesia Program (PIP). At Madrasah Ibtidaiyah Negeri 20 Bireuen, the selection process for underprivileged students is still carried out manually by homeroom teachers by collecting data on students and their parents. This study aims to design, implement, and evaluate a classification method using the Backpropagation Neural Network to determine the eligibility of PIP scholarship recipients. The dataset consists of 309 entries, comprising 217 training data and 92 testing data, collected from MIN 20 Bireuen students between 2021 and 2023. The attributes used include father's occupation, mother's occupation, father's income, mother's income, number of dependents, number of vehicles, home ownership status, and card ownership status. Prior to training, the data were normalized using Min-Max scaling. The model was built with one hidden layer using a hard-limit activation function and a learning rate of 0.01. The classification results are categorized as "Eligible" and "Not Eligible". The model achieved an accuracy of 98%, precision of 100%, recall of 95%, and F1-score of 97%.

Downloads

Download data is not yet available.

References

[1] D. Oleh, “Penentuan Kelayakan Penerima Program Indonesia Pintar (Pip) Menggunakan Metode Backpropagation Proposal SkripsI Disusun Sebagai Syarat Memperoleh Gelar Sarjana Komputer Prodi Teknik Informatika Fakultas Teknik Universitas Malikussaleh.”

[2] S. Ujud, T. D. Nur, Y. Yusuf, N. Saibi, and M. R. Ramli, “Penerapan Model Pembelajaran Discovery Learning Untuk Meningkatkan Hasil Belajar Siswa Sma Negeri 10 Kota Ternate Kelas X Pada Materi Pencemaran Lingkungan,” J. Bioedukasi, vol. 6, no. 2, pp. 337–347, 2023, doi: 10.33387/bioedu.v6i2.7305.

[3] Fajriana, Safriana, and Nurdin, “Students’ Perceptions of Learning Using Powtoon Based on Gender in SMP/MTS,” Int. J. Eng. Sci. InformationTechnology (IJESTY, vol. 2, no. 1, pp. 76–83, 2022, doi: 10.52088/ijesty.v1i1.205.

[4] A. Iskandar, “Sistem Pendukung Keputusan Kelayakan Penerima Bantuan Dana KIP Kuliah Menggunakan Metode ROC-EDAS,” Build. Informatics, Technol. Sci., vol. 4, no. 2, Sep. 2022, doi: 10.47065/bits.v4i2.2265.

[5] N. Aulia, N. Suarna, and W. Prihartono, “Klasifikasi Penentuan Penerima Program Indnesia Pintar Di Krwilbidikcam Greged Menggunakan Algoritma C4.5,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3913–3919, 2024, doi: 10.36040/jati.v7i6.8294.

[6] A. Razi, “Klasifikasi Peineirima Beiasiswa Aceih Carong (Aceih Pintar) Di Uiniveirsitas Malikuissaleih Meingguinakan Algoritma Knn (K-Neiareist Neiighbors),” Juirnal Tika, vo. 7, no.1, pp. 79–84, 2022. https://doi.org/10.51179/tika.v7i1.1116

[7] M. Qamal and I. Sahputra, “Sistem Pendukung Keputusan Penentuan Penerimaan PKH Menggunakan Metode Naïve Bayes.”

[8] C. Maharani, D. A. Ningrum, A. E. Fatmawati, and A. Fadilla, “Dampak Kemiskinan terhadap Kualitas Pendidikan Anak di Indonesia: Rekomendasi Kebijakan yang Efektif,” J. Macroecon. Soc., vol. 1, no. 3, pp. 1–10, 2024, doi: 10.47134/jmsd.v1i3.199.

[9] E. Adawiyah, “Kemiskinan Dan Fakor-Faktor Penyebabnya,” vol. 1, no. April, pp. 43–50, 2020.

[10] O. Putra Barus, “Perbangingan Metode Extreme Learning Machine dan Backpropagation untuk Mengklasifikasi Phising Websites,” 2019.

[11] W. A. Adzani and P. S. Sasongko, “Klasifikasi Status Gizi Balita Menggunakan Metode Backpropagation Dengan Algoritma Levenberg-Marquardt dan Inisialisasi Nguyen Widrow,” J. Masy. Inform., vol. 12, no. 1, pp. 29–43, 2021, doi: 10.14710/jmasif.12.1.41020.

[12] S. K. Mondal et al., “Glacial lakes outburst susceptibility and risk in the Eastern Himalayas using analytical hierarchy process and backpropagation neural network models,” Geomatics, Nat. Hazards Risk, vol. 16, no. 1, p., 2025, doi: 10.1080/19475705.2024.2449134.

[13] R. Huang, B. Zeng, D. Ai, J. Yuan, and H. Xu, “Landslide dynamic hazard prediction based on precipitation variation trend and backpropagation neural network,” Geocarto Int., vol. 39, no. 1, p., 2024, doi: 10.1080/10106049.2024.2322058.

[14] Waldi Setiawan, Dedy Hartama, Muhammad Ridwan Lubis, Ihsan Syajidan, and Agus Perdana Windarto, “Klasifikasi Peminatan Topik Keilmuan Dalam Penyelesaian Studi Menggunakan Algoritma Naive Bayes,” J. Comput. Informatics Res., vol. 3, no. 2, pp. 188–198, 2024, doi: 10.47065/comforch.v3i2.1200.

[15] V. Plotnikova, M. Dumas, A. Nolte, and F. Milani, “Designing a data mining process for the financial services domain,” J. Bus. Anal., vol. 6, no. 2, pp. 140–166, 2023, doi: 10.1080/2573234X.2022.2088412.

[16] N. Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 183–188, 2020, doi: 10.31294/p.v22i2.8808.

[17] D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.

[18] O. R. Runswick, R. H. J. C. Ravensbergen, P. M. Allen, and D. L. Mann, “Expert opinion on classification for footballers with vision impairment: Towards evidence-based minimum impairment criteria,” J. Sports Sci., vol. 39, no. sup1, pp. 30–39, 2021, doi: 10.1080/02640414.2021.1881301.

[19] D. Hutabarat, Solikhun, M. Fauzan, A. P. Windarto, and F. Rizki, “Penerapan Algoritma Backpropagation dalam Memprediksi Hasil Panen Tanaman Sayuran,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 2, no. 1, pp. 21–29, 2021, doi: 10.37148/bios.v2i1.18.

[20] J. R. Simanungkalit, H. Haviluddin, H. S. Pakpahan, N. Puspitasari, and M. Wati, “Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet,” Ilk. J. Ilm., vol. 12, no. 1, pp. 32–38, 2020, doi: 10.33096/ilkom.v12i1.521.32-38.

[21] A. S. Gutama, M. Fedryansyah, and E. Nuriyah, “Implementasi Program Kartu Indonesia Pintar ( Kip ) Berdasarkan Basis Nilai Keadilan Dalam Kebijakan Implementation of the Kartu Indonesia Pintar ( Kip ) Based on the Value Basis of Justice in Social Policy,” Penelit. dan Pengabdi., vol. 2, no. 3, p. 394, 2021.

Downloads

Published

2025-08-03

How to Cite

[1]
G. Rizkya, N. Nurdin, and R. Meiyanti, “Determining Eligibility for Smart Indonesia Program (PIP) Recipients Using the Backpropagation Method”, JAIC, vol. 9, no. 4, pp. 1201–1206, Aug. 2025.

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.