The Application of Deep Learning for Skin Disease Classification Using the EfficientNet-B1 Model
DOI:
https://doi.org/10.30871/jaic.v9i2.9100Keywords:
Classification, Dermatology, EfficientNetB1, Resnet50, Skin DiseaseAbstract
The skin, being the largest organ in the human body, plays a vital role in protecting against various external threats. However, cases of skin diseases are steadily rising across countries, making it a significant global health concern. Diagnosis often faces challenges due to symptom variations and low public awareness, highlighting the need for automated technology in skin disease detection. This study developed an automated classification system for skin diseases using EfficientNet-B1, capable of categorizing five skin conditions: Acne and Rosacea, Eczema, Melanoma Skin Cancer Nevi and Moles, Normal, Vitiligo, Psoriasis pictures Lichen Planus and related diseases, Seborrheic Keratoses and other Benign Tumors, Tinea Ringworm Candidiasis and other Fungal Infections. The system utilized 1.571 plus 1641 JPG digital images resized to 224 x 224 pixels, with 80% of the data allocated for training and 20% for testing. The trained model achieved a high accuracy of 99%, demonstrating the system's potential to support faster and more accurate diagnostic processes.
Downloads
References
[1] M. A. Hanin, R. Patmasari, R. Yunendah, and N. Fu’adah, “Sistem Klasifikasi Penyakit Kulit Menggunakan Convolutional Neural Network (CNN) Skin Disease Classification System Using Convolutional Neural Network (CNN),” Feb. 2021.
[2] S. R. Listyanto, “Implementasi K-Nearest Neighbor Untuk Mengenali Pola Citra Dalam Mendeteksi Penyakit Kulit.”
[3] R. Adawiyah and D. I. Mulyana, “INFORMASI (Jurnal Informatika dan Sistem Informasi) Optimasi Deteksi Penyakit Kulit Menggunakan Metode Support Vector Machine (SVM) dan Gray Level Co-occurrence Matrix (GLCM),” May 2022.
[4] Mhd. Furqan, “Klasifikasi Penyakit Kulit Menggunakan Algoritma Naïve Bayes Berdasarkan Tekstur Warna Berbasis Android,” Mar. 2022.
[5] Nurkhasanah and Murinto, “Klasifikasi Penyakit Kulit Wajah Menggunakan Metode Convolutional Neural Network Classification of Facial Skin Diseases Using the Method of the Convolutional Neural Network,” SAINTEKS, vol. 18, no. 2, 2021, [Online]. Available: https://www.kaggle.com/datasets
[6] M. Rizqi Efrian et al., “Image Recognition Berbasis Convolutional Neural Network (CNN) Untuk Mendeteksi Penyakit Kulit Pada Manusia,” Jurnal POLEKTRO: Jurnal Power Elektronik, vol. 11, no. 1, p. 2022, 2022.
[7] C. Rinaldy Leonard, I. Nurtanio, and A. Bustamin, “Systematic Literature Review: Deep Learning Pada Citra Sinar-X Paru Untuk Klasifikasi Penyakit Systematic Literature Review: Deep Learning in Lung X-ray Images for Diseases Classification,” Aug. 2024.
[8] Dwi Marisa Efendi and Putri Yulita Sari, “Sistem Pakar Diagnosa Penyakit Kulit Wajah Dengan Metode ,” 2020.
[9] W. Hastomo et al., “Plant Disease Identification Using EfficienNet,” 2023. [Online]. Available: https://ejournal.ptti.web.id/index.php/icoca/index
[10] R. R. Saputro, A. Junaidi, and W. A. Saputra, “Klasifikasi Penyakit Kanker Kulit Menggunakan Metode Convolutional Neural Network (Studi Kasus: Melanoma),” Data Institut Teknologi Telkom Purwokerto, vol. 2, no. 1, pp. 52–57, 2022.
[11] M. Harahapp and Amir Mahmud Husein, “Penerapan Efficient-Net Dalam Mengklasifikasi Kanker Kulit,” Medan, Jun. 2024.
[12] Handoko Adji Pangestu and Kusrini, “Peningkatan kinerja arsitektur ResNet50 untuk Menangani Masalah Overfitting dalam Klasifikasi Penyakit Kulit,” TEMATIK, vol. 11, no. 1, pp. 65–71, Jun. 2024, doi: 10.38204/tematik.v11i1.1876.
[13] M. Kurniawan Soegeng and A. Noertjahyana, “Penerapan Convolutional Neural Network untuk Klasifikasi Kanker Kulit Melanoma pada Dataset Gambar Kulit.”
[14] C. Lubis, D. Yuliarto, U. Tarumanagara Jakarta, R. Sakit Tiara Tangerang, and K. Kunci, “Klasifikasi Penyakit Kulit Menggunakan Convolutional Neural Network (CNN) Dengan Arsitektur VGG16,” vol. 8, no. 1, 2023.
[15] D. A. Wijaya, A. Triayudi, and A. Gunawan, “Penerapan Artificial Intelligence Untuk Klasifikasi Penyakit Kulit Dengan Metode Convolutional Neural Network Berbasis Web,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 3, pp. 685–692, May 2023, doi: 10.47065/josyc.v4i3.3519.
[16] S. W. Hartopo and A. Hajjah, “Penerapan Metode Forward Chaining Untuk Mendiagnosa Penyakit Kulit Pada Manusia,” Jurnal Mahasiswa Aplikasi Teknologi Komputer dan Informasi, vol. 2, no. 2, pp. 77–82, 2020.
[17] Erni, A. Agung Laksono, M. Syahlanisyiam, and P. Rosyani, “Sistem Pakar Diagnosa Penyakit Kulit Dengan Menggunakan Metode Forward Chaining,” Jun. 2023. [Online]. Available: https://journal.mediapublikasi.id/index.php/manekin
[18] A. Rosana, G. Pasek, S. Wijaya, and F. Bimantoro, “Sistem Pakar Diagnosa Penyakit Kulit pada Manusia dengan Metode Dempster Shafer (Expert System of Diagnosing Skin Disease of Human being using Dempster Shafer Method),” Dec. 2020. [Online]. Available: http://jcosine.if.unram.ac.id/
[19] I. Bagus, Y. S. Putra, and S. Wibisono, “Sistem Pakar Diagnosa Penyakit Kulit Anjing Menggunakan Metode Case Based Reasoning dan Algoritma K-Nearest Neighbour,” Jun. 2020.
[20] E. Aenun, N. Munfaati, and A. Witanti, “Klasifikasi Buah dan Sayuran Segar atau Busuk Menggunakan Convolutional Neural Network,” 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ayub Michaelangelo Manurung, Ilham Santoso, Egia Rosi Subhiyakto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).