Implementation of the Hybrid K-Nearest Neighbour Algorithm for Dangdut Music Sub-Genre Classification

Authors

  • Tria Hikmah Fratiwi Institut Teknologi dan Bisnis STIKOM Bali
  • I Gede Harsemadi Institut Teknologi dan Bisnis STIKOM Bali
  • Putu Tjintia Kencana Dewi Institut Teknologi dan Bisnis STIKOM Bali
  • Luh Rediasih Institut Teknologi dan Bisnis STIKOM Bali
  • M. Alvinnur Filardi Institut Teknologi dan Bisnis STIKOM Bali
  • I Dewa Made Dharma Putra Santika Institut Teknologi dan Bisnis STIKOM Bali

DOI:

https://doi.org/10.30871/jaic.v9i4.9702

Keywords:

Dangdut, Genetic Algorithm, Classification, K-Nearest Neighbor, Music Information Retrieval

Abstract

This research focuses on the classification of dangdut sub-genres — classical, rock, and koplo — by collecting 136 songs from Ellya Khadam, Rhoma Irama, and Denny Caknan, each representing distinct eras of dangdut music. From these, 483 music segments of 30 seconds each were extracted and labelled with expert assistance to ensure accuracy. Six spectral features (centroid, skewness, rolloff, kurtosis, spread, and flatness) were computed and stored in a dataset divided into 70% training and 30% testing sets. The Hybrid K-NN algorithm, integrating Genetic Algorithm (GA) to optimize the k parameter, was applied and evaluated through 5-fold cross-validation. GA parameters were set to a population size of 10, 15 generations, 4-bit chromosome length, and 3-fold cross-validation during optimization. Hybrid K-NN achieved the highest accuracy of 74.31% at k=4 with a processing time of 4.86 seconds, outperforming conventional K-NN (68.75% at k=4, 0.04 seconds), Decision Tree (61.11%, 0.42 seconds), and SVM with ECOC (54.86%, 1.99 seconds). The Hybrid K-NN also demonstrated stable performance with an average accuracy of 72.04% and a standard deviation of 2.22 percent, while the average precision, recall, and F1-score were each around 0.72. Confusion matrix analysis revealed frequent misclassification of class 2 as class 1, highlighting a classification challenge. Overall, this research shows that Hybrid K-NN is more effective than the other methods in capturing data patterns, optimizing parameters, and generalizing to unseen data, though at the cost of longer computation time due to GA’s iterative optimization and validation processes.

Downloads

Download data is not yet available.

References

[1] D. Setiaji, “Tinjauan Karakteristik Dangdut Koplo Sebagai Perkembangan Genre Musik Dangdut,” Handep (Pasca Sarjana institut Seni Indonesia Surakarta), vol. 1, pp. 19–34, Dec. 2017.

[2] F. G. Hananta, “Pergeseran Instrumentasi Karakteristik Musik Dangdut Era Digital Di Jawa Timur,” Repertoar, vol. 1, Jul. 2023.

[3] B. R. Ismanto, T. M. Kusuma, and D. Anggraini, “Indonesian Music Classification on Folk and Dangdut Genre Based on Rolloff Spectral Feature Using Support Vector Machine (SVM) Algorithm,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 1, p. 11, Jan. 2021, doi: 10.22146/ijccs.54646.

[4] X. Li, F. Li, Z. P. Lu, and Z. Yang, “Music Genre Classification: A Comprehensive Study on Feature Fusion with CNN and MLP Architectures,” 2025, doi: 10.54254/2755-2721/132/2024.20632.

[5] I. Gede Harsemadi, “Perbandingan Kinerja Algoritma K-NN dan SVM dalam Sistem Klasifikasi Genre Musik Gamelan Bali,” INSANI Informatics for Educators and Professionals: Journal of Informatics, vol. 8, no. 1, pp. 1–10, 2023, [Online]. Available: www.joox.com

[6] T. H. Fratiwi, M. Sudarma, and N. Pramaita, “Sistem Klasifikasi Musik Gamelan Angklung Bali Terhadap Suasana Hati Menggunakan Algoritma K-Nearest Neighbor Berbasis Algoritma Genetika,” Majalah Ilmiah Teknologi Elektro, vol. 20, no. 2, p. 265, Dec. 2021, doi: 10.24843/mite. 2021.v20i02.p10.

[7] M. Ikhwan, Kepikiran Dangdut. Yogyakarta: Warning Books, 2023.

[8] A. Lerch, An Intoduction to Audio Content Analysis: Music Information Retrieval, Task and Application, Second Edition. New Jersey: John Wiley & Sons, Inc., 2023.

[9] W. Andriyani et al., Matematika Pada Kecerdasan Buatan, Pertama. Makassar: CV. Tohar Media, 2024.

[10] W. Andriyani et al., Data Sebagai Fondasi Kecerdasan Buatan, Pertama. Makassar: CV. Tohar Media, 2024.

[11] P. Suwirmayanti, R. A. N. Diaz, I. K. G. D. Putra, and K. Budiarta, Data Mining: Teknik, Implementasi, dan Aplikasi, Pertama. Yogyakarta: Andi, 2023.

[12] N. T. S. Saptadi et al., Data Mining. Batam: Yayasan Cendikia Mulia Mandiri, 2024.

[13] J. Eronen, M. Ptaszynski, F. Masui, G. Leliwa, and M. Wroczynski, “Exploring the Potential of Feature Density in Estimating Machine Learning Classifier Performance with Application to Cyberbullying Detection,” in CEUR Workshop Proceedings 2935, 2022. doi: 10.48550/arXiv.2206.01949.

[14] C. Mahlich, T. Vente, and J. Beel, “From Theory to Practice: Implementing and Evaluating e-Fold Cross-Validation,” in International Conference on Artificial Intelligence and Machine Learning Research (CAIMLR 2024), Singapore, 2024.

[15] B. Ghojogh and M. Crowley, “The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial,” May 2023, [online]. Available: http://arxiv.org/abs/1905.12787

Downloads

Published

2025-08-06

How to Cite

[1]
Tria Hikmah Fratiwi, I Gede Harsemadi, Putu Tjintia Kencana Dewi, Luh Rediasih, M. Alvinnur Filardi, and I Dewa Made Dharma Putra Santika, “Implementation of the Hybrid K-Nearest Neighbour Algorithm for Dangdut Music Sub-Genre Classification”, JAIC, vol. 9, no. 4, pp. 1537–1543, Aug. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.