The Application of Deep Learning for Skin Disease Classification Using the EfficientNet-B1 Model

Authors

  • Ayub Michaelangelo Manurung Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Semarang 50131, Indonesia
  • Ilham Santoso Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Semarang 50131, Indonesia
  • Egia Rosi Subhiyakto Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Semarang 50131, Indonesia

DOI:

https://doi.org/10.30871/jaic.v9i2.9100

Keywords:

Classification, Dermatology, EfficientNetB1, Resnet50, Skin Disease

Abstract

The skin, being the largest organ in the human body, plays a vital role in protecting against various external threats. However, cases of skin diseases are steadily rising across countries, making it a significant global health concern. Diagnosis often faces challenges due to symptom variations and low public awareness, highlighting the need for automated technology in skin disease detection. This study developed an automated classification system for skin diseases using EfficientNet-B1, capable of categorizing five skin conditions: Acne and Rosacea, Eczema, Melanoma Skin Cancer Nevi and Moles, Normal, Vitiligo, Psoriasis pictures Lichen Planus and related diseases, Seborrheic Keratoses and other Benign Tumors, Tinea Ringworm Candidiasis and other Fungal Infections. The system utilized 1.571 plus 1641 JPG digital images resized to 224 x 224 pixels, with 80% of the data allocated for training and 20% for testing. The trained model achieved a high accuracy of 99%, demonstrating the system's potential to support faster and more accurate diagnostic processes.

Downloads

Download data is not yet available.

References

[1] M. A. Hanin, R. Patmasari, R. Yunendah, and N. Fu’adah, “Sistem Klasifikasi Penyakit Kulit Menggunakan Convolutional Neural Network (CNN) Skin Disease Classification System Using Convolutional Neural Network (CNN),” Feb. 2021.

[2] S. R. Listyanto, “Implementasi K-Nearest Neighbor Untuk Mengenali Pola Citra Dalam Mendeteksi Penyakit Kulit.”

[3] R. Adawiyah and D. I. Mulyana, “INFORMASI (Jurnal Informatika dan Sistem Informasi) Optimasi Deteksi Penyakit Kulit Menggunakan Metode Support Vector Machine (SVM) dan Gray Level Co-occurrence Matrix (GLCM),” May 2022.

[4] Mhd. Furqan, “Klasifikasi Penyakit Kulit Menggunakan Algoritma Naïve Bayes Berdasarkan Tekstur Warna Berbasis Android,” Mar. 2022.

[5] Nurkhasanah and Murinto, “Klasifikasi Penyakit Kulit Wajah Menggunakan Metode Convolutional Neural Network Classification of Facial Skin Diseases Using the Method of the Convolutional Neural Network,” SAINTEKS, vol. 18, no. 2, 2021, [Online]. Available: https://www.kaggle.com/datasets

[6] M. Rizqi Efrian et al., “Image Recognition Berbasis Convolutional Neural Network (CNN) Untuk Mendeteksi Penyakit Kulit Pada Manusia,” Jurnal POLEKTRO: Jurnal Power Elektronik, vol. 11, no. 1, p. 2022, 2022.

[7] C. Rinaldy Leonard, I. Nurtanio, and A. Bustamin, “Systematic Literature Review: Deep Learning Pada Citra Sinar-X Paru Untuk Klasifikasi Penyakit Systematic Literature Review: Deep Learning in Lung X-ray Images for Diseases Classification,” Aug. 2024.

[8] Dwi Marisa Efendi and Putri Yulita Sari, “Sistem Pakar Diagnosa Penyakit Kulit Wajah Dengan Metode ,” 2020.

[9] W. Hastomo et al., “Plant Disease Identification Using EfficienNet,” 2023. [Online]. Available: https://ejournal.ptti.web.id/index.php/icoca/index

[10] R. R. Saputro, A. Junaidi, and W. A. Saputra, “Klasifikasi Penyakit Kanker Kulit Menggunakan Metode Convolutional Neural Network (Studi Kasus: Melanoma),” Data Institut Teknologi Telkom Purwokerto, vol. 2, no. 1, pp. 52–57, 2022.

[11] M. Harahapp and Amir Mahmud Husein, “Penerapan Efficient-Net Dalam Mengklasifikasi Kanker Kulit,” Medan, Jun. 2024.

[12] Handoko Adji Pangestu and Kusrini, “Peningkatan kinerja arsitektur ResNet50 untuk Menangani Masalah Overfitting dalam Klasifikasi Penyakit Kulit,” TEMATIK, vol. 11, no. 1, pp. 65–71, Jun. 2024, doi: 10.38204/tematik.v11i1.1876.

[13] M. Kurniawan Soegeng and A. Noertjahyana, “Penerapan Convolutional Neural Network untuk Klasifikasi Kanker Kulit Melanoma pada Dataset Gambar Kulit.”

[14] C. Lubis, D. Yuliarto, U. Tarumanagara Jakarta, R. Sakit Tiara Tangerang, and K. Kunci, “Klasifikasi Penyakit Kulit Menggunakan Convolutional Neural Network (CNN) Dengan Arsitektur VGG16,” vol. 8, no. 1, 2023.

[15] D. A. Wijaya, A. Triayudi, and A. Gunawan, “Penerapan Artificial Intelligence Untuk Klasifikasi Penyakit Kulit Dengan Metode Convolutional Neural Network Berbasis Web,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 3, pp. 685–692, May 2023, doi: 10.47065/josyc.v4i3.3519.

[16] S. W. Hartopo and A. Hajjah, “Penerapan Metode Forward Chaining Untuk Mendiagnosa Penyakit Kulit Pada Manusia,” Jurnal Mahasiswa Aplikasi Teknologi Komputer dan Informasi, vol. 2, no. 2, pp. 77–82, 2020.

[17] Erni, A. Agung Laksono, M. Syahlanisyiam, and P. Rosyani, “Sistem Pakar Diagnosa Penyakit Kulit Dengan Menggunakan Metode Forward Chaining,” Jun. 2023. [Online]. Available: https://journal.mediapublikasi.id/index.php/manekin

[18] A. Rosana, G. Pasek, S. Wijaya, and F. Bimantoro, “Sistem Pakar Diagnosa Penyakit Kulit pada Manusia dengan Metode Dempster Shafer (Expert System of Diagnosing Skin Disease of Human being using Dempster Shafer Method),” Dec. 2020. [Online]. Available: http://jcosine.if.unram.ac.id/

[19] I. Bagus, Y. S. Putra, and S. Wibisono, “Sistem Pakar Diagnosa Penyakit Kulit Anjing Menggunakan Metode Case Based Reasoning dan Algoritma K-Nearest Neighbour,” Jun. 2020.

[20] E. Aenun, N. Munfaati, and A. Witanti, “Klasifikasi Buah dan Sayuran Segar atau Busuk Menggunakan Convolutional Neural Network,” 2024.

Downloads

Published

2025-03-11

How to Cite

[1]
A. M. Manurung, I. Santoso, and E. R. Subhiyakto, “The Application of Deep Learning for Skin Disease Classification Using the EfficientNet-B1 Model”, JAIC, vol. 9, no. 2, pp. 310–317, Mar. 2025.

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.