Development of ViScan: A Mobile Application for Skin Cancer Detection Using Ionic Framework and YOLOv10x

Authors

  • Alif Agsakli Haresta Haresta Universitas Dian Nuswantoro
  • Cinantya Paramita Universitas Dian Nuswantoro
  • William Dwiputra Tjahtjono Universitas Dian Nuswantoro

DOI:

https://doi.org/10.30871/jaic.v9i3.9426

Keywords:

Skin Cancer Detection, Mobile Application, YOLOv10x, Ionic Framework, Mobile Health Application

Abstract

Skin cancer is a common global health issue, with the number of cases continuing to rise worldwide. Early detection is crucial for improving patient outcomes, but traditional detection methods often require significant time, cost, and medical expertise. To address this challenge, this research focuses on developing a mobile application that leverages deep learning, specifically the YOLOv10x model, to enable fast and accurate detection of skin lesions. This application aims to provide an easy-to-use platform for self-monitoring skin health, particularly for individuals in remote areas with limited access to medical facilities. The system uses the HAM10000 dataset, which consists of a diverse collection of dermoscopy images of skin lesions, to train the YOLOv10x object detection model for real-time detection on mobile devices. By leveraging TensorFlow.js and Node.js, the model processes skin images and provides real-time results with precision and efficiency. The mobile application, developed using the Ionic Framework, ensures cross-platform compatibility and a responsive, intuitive user interface. System performance was evaluated using key metrics such as Precision (84.2%), Recall (86.3%), mAP (89.2%), and F1 Score (85.2%), demonstrating its effectiveness in early skin cancer detection. The potential of this application extends beyond detection, contributing to society by raising awareness and offering an accessible, low-cost screening solution.

Downloads

Download data is not yet available.

References

[1] A. H. Roky et al., “Overview of skin cancer types and prevalence rates across continents,” Cancer Pathog. Ther., vol. 3, no. 2, pp. 89–100, Mar. 2025, doi: 10.1016/j.cpt.2024.08.002.

[2] A. M. Ali, M. S. Dawood, M. K. Taher, and F. A. Zghair, “Preliminary study for non – invasive optical detection of squamous and basal cell carcinomas,” Biomed. Eng. OnLine, vol. 11, no. 1, p. 88, Dec. 2012, doi: 10.1186/1475-925X-11-88.

[3] B. Shetty, R. Fernandes, A. P. Rodrigues, R. Chengoden, S. Bhattacharya, and K. Lakshmanna, “Skin lesion classification of dermoscopic images using machine learning and convolutional neural network,” Sci. Rep., vol. 12, no. 1, p. 18134, Oct. 2022, doi: 10.1038/s41598-022-22644-9.

[4] A. M. Smak Gregoor et al., “Artificial intelligence in mobile health for skin cancer diagnostics at home (AIM HIGH): a pilot feasibility study,” eClinicalMedicine, vol. 60, p. 102019, Jun. 2023, doi: 10.1016/j.eclinm.2023.102019.

[5] F. Rubagumya et al., “Feasibility Study of a Smartphone Application for Detecting Skin Cancers in People With Albinism,” JCO Glob. Oncol., no. 6, pp. 1370–1375, Nov. 2020, doi: 10.1200/GO.20.00264.

[6] S. Albahli, “A Robust YOLOv8-Based Framework for Real- Time Melanoma Detection and Segmentation with Multi- Dataset Training,” Diagnostics, vol. 15, no. 6, p. 691, Mar. 2025, doi: 10.3390/diagnostics15060691.

[7] Student in Dept of MME, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India et al., “Real-Time Skin Disease Detection and Classification Using YOLOv8 Object Detection for Healthcare Diagnosis,” Int. J. Multidiscip. Res. Anal., vol. 07, no. 12, Dec. 2024, doi: 10.47191/ijmra/v7-i12-09.

[8] J. Tan, Y. Chen, and S. Jiao, “Visual Studio Code in Introductory Computer Science Course: An Experience Report,” Mar. 10, 2023, arXiv: arXiv:2303.10174. doi: 10.48550/arXiv.2303.10174.

[9] A. A. Smaragdina, R. C. Nur Susilowati, R. Ahmadi, Y. D. Andriansyah, and J. B. Md Yunos, “JSinAja: Javascript Programming Learning Application (React JS, React Native, Node JS) Mobile Based Using Problem Based Learning Method,” Lett. Inf. Technol. Educ. LITE, vol. 6, no. 1, p. 5, May 2023, doi: 10.17977/um010v6i22023p5-10.

[10] M. Hort, M. Kechagia, F. Sarro, and M. Harman, “A Survey of Performance Optimization for Mobile Applications,” IEEE Trans. Softw. Eng., vol. 48, no. 8, pp. 2879–2904, Aug. 2022, doi: 10.1109/TSE.2021.3071193.

[11] Oscar Danilo Gavilánez Alvarez et al., “Comparative Analysis of Cross-Platform Frameworks,” J. Namib. Stud. Hist. Polit. Cult., vol. 33, May 2023, doi: 10.59670/jns.v33i.874.

[12] A. Maulana Komarudin, A. Nurul Huda, and D. Agistira, “PENERAPAN TEKNIK WEB SCRAPING PADA SITUS IMDb DENGAN NODE JS,” J. Siliwangi Seri Sains Dan Teknol., vol. 8, no. 2, Dec. 2022, doi: 10.37058/jssainstek.v8i2.6371.

[13] M. N. Jeyaraj, S. Sucharitharathna, C. Senarath, Y. Kanagaraj, and I. Udayakumara, “Cognitive Visual-learning Environment for PostgreSQL”.

[14] E. Cengil, “Weld Defect Detection with YOLOv10,” NATURENGS MTU J. Eng. Nat. Sci. Mal. Turgut Ozal Univ., Dec. 2024, doi: 10.46572/naturengs.1592956.

[15] B. S. Ali, H. Nasir, A. Khan, M. Ashraf, and S. M. Akbar, “A Machine Learning-Based Model for the Detection of Skin Cancer Using YOLOv10,” in 2024 IEEE 8th International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia: IEEE, Sep. 2024, pp. 1–6. doi: 10.1109/ICSIPA62061.2024.10686198.

[16] X. Yu, Y. Tan, S. Gao, Y. Zhang, and H. Fang, “Research and application of real-time human posture recognition technology based on TensorFlow.js and CNN model,” in International Conference on Optics, Electronics, and Communication Engineering (OECE 2024), Y. Yue, Ed., Wuhan, China: SPIE, Nov. 2024, p. 221. doi: 10.1117/12.3049898.

[17] T. Huang, “FEAD: Figma-Enhanced App Design Framework for Improving UI/UX in Educational App Development,” Nov. 22, 2024, arXiv: arXiv:2412.06793. doi: 10.48550/arXiv.2412.06793.

[18] S. Deochake, V. Channapattan, and G. Steelman, “BigBird: Big Data Storage and Analytics at Scale in Hybrid Cloud,” Mar. 22, 2022, arXiv: arXiv:2203.11472. doi: 10.48550/arXiv.2203.11472.

[19] T. H. H. Aldhyani, A. Verma, M. H. Al-Adhaileh, and D. Koundal, “Multi-Class Skin Lesion Classification Using a Lightweight Dynamic Kernel Deep-Learning-Based Convolutional Neural Network,” Diagnostics, vol. 12, no. 9, p. 2048, Aug. 2022, doi: 10.3390/diagnostics12092048.

[20] A. Newaz and F. S. Haq, “A Novel Hybrid Sampling Framework for Imbalanced Learning,” SSRN Electron. J., 2022, doi: 10.2139/ssrn.4200131.

[21] F. Grina, Z. Elouedi, and E. Lefevre, “Learning from Imbalanced Data Using an Evidential Undersampling-Based Ensemble,” in Scalable Uncertainty Management, vol. 13562, F. Dupin De Saint-Cyr, M. Öztürk-Escoffier, and N. Potyka, Eds., in Lecture Notes in Computer Science, vol. 13562. , Cham: Springer International Publishing, 2022, pp. 235–248. doi: 10.1007/978-3-031-18843-5_16.

[22] E.-B. C. And Alternative Medicine, “Retracted: An Improved Machine Learning Model for Diagnostic Cancer Recognition Using Artificial Intelligence,” Evid. Based Complement. Alternat. Med., vol. 2023, no. 1, p. 9873948, Jan. 2023, doi: 10.1155/2023/9873948.

Downloads

Published

2025-06-17

How to Cite

[1]
A. A. H. Haresta, Cinantya Paramita, and William Dwiputra Tjahtjono, “Development of ViScan: A Mobile Application for Skin Cancer Detection Using Ionic Framework and YOLOv10x”, JAIC, vol. 9, no. 3, pp. 863–867, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.