Comparison of ResNet-50, EfficientNet-B1, and VGG-16 Algorithms for Cataract Eye Image Classification
DOI:
https://doi.org/10.30871/jaic.v9i2.8968Keywords:
ResNet-50, EfficientNet-B1, Classification, Eye, CataractAbstract
Cataract is a leading cause of blindness worldwide, emphasizing the need for an effective early detection approach. This study evaluates the capabilities of three widely-used deep learning models—ResNet-50, EfficientNet-B1, and VGG-16—in classifying visual data. The analysis was conducted on a dataset of 2,112 images, comprising 1,074 normal cases and 1,038 cataract cases. The findings reveal that ResNet-50 achieved the best accuracy at 98.61%, followed by EfficientNet-B1 at 96.64% and VGG-16 at 93.82%. In comparison, previous research using Convolutional Neural Network (CNN) techniques reported an accuracy of 92.93%. These results highlight ResNet-50's superior potential for image classification tasks in this domain. This study contributes significantly to the selection of robust models for building an automated cataract detection framework.
Downloads
References
[1] G. J. Bu’ulolo, A. Jacobus, and F. D. Kambey, “Identifikasi Citra Penyakit Mata Katarak Menggunakan Convolutional Neural Network,” Jurnal Teknik Informatika, vol. 16, no. 4, pp. 375–382, 2021.
[2] J. He, C. Li, J. Ye, Y. Qiao, and L. Gu, “Multi-label ocular disease classification with a dense correlation deep neural network,” Biomed Signal Process Control, vol. 63, p. 102167, Jan. 2021, doi: 10.1016/j.bspc.2020.102167.
[3] S. Astiti, N. Nopriadi, W. Novrian, and Y. P. Putra, “Penerapan Deep Learning pada Pengolahan Data Citra dan Klasifikasi Udang Vaname Menggunakan Algoritma Convolutional Neural Network,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 1, pp. 490–498, 2024.
[4] R. J. Gunawan, B. Irawan, and C. Setianingsih, “Pengenalan Ekspresi Wajah Berbasis Convolutional Neural Network Dengan Model Arsitektur VGG16,” eProceedings of Engineering, vol. 8, no. 5, 2021.
[5] S.-Y. Lin and C.-L. Lin, “Brain tumor segmentation using U-Net in conjunction with EfficientNet,” PeerJ Comput Sci, vol. 10, p. e1754, Jan. 2024, doi: 10.7717/peerj-cs.1754.
[6] M. Singla, K. S. Gill, R. Chauhan, and H. S. Pokhariya, “ResNet50 Utilization for Bag Classification: A CNN Model Visualization Approach in Deep Learning,” in 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS), IEEE, Jun. 2024, pp. 1–4. doi: 10.1109/ICITEICS61368.2024.10624847.
[7] R. B. J. Simanjuntak, Y. Fuâ€TMadah, R. Magdalena, S. Saidah, A. B. Wiratama, and I. D. S. Ubaidah, “Cataract Classification Based on Fundus Images Using Convolutional Neural Network,” JOIV : International Journal on Informatics Visualization, vol. 6, no. 1, p. 33, Mar. 2022, doi: 10.30630/joiv.6.1.856.
[8] W. William and C. Lubis, “Klasifikasi Penyakit Mata Menggunakan CNN,” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 10, no. 1, Mar. 2022, doi: 10.24912/jiksi.v10i1.17834.
[9] R. Z. I. Ramli, R. D. Atmaja, and I. Widjayanto, “Deteksi dan klasifikasi stadium katarak senilis berdasarkan citra mata menggunakan metode support vector machine (SVM),” eProceedings of Engineering, vol. 5, no. 2, 2018.
[10] A. Febriyanti and A. Alamsyah, “Peningkatan Akurasi Algoritma Support Vector Machine Menggunakan Dual-Tree Complex Wavelet Transform Pada Klasifikasi Citra Katarak dan Normal,” Indonesian Journal of Mathematics and Natural Sciences, vol. 45, no. 2, pp. 51–58, Oct. 2022, doi: 10.15294/ijmns.v45i2.39723.
[11] S. Faizal, C. A. Rajput, R. Tripathi, B. Verma, M. R. Prusty, and S. S. Korade, “Automated cataract disease detection on anterior segment eye images using adaptive thresholding and fine tuned inception-v3 model,” Biomed Signal Process Control, vol. 82, p. 104550, 2023.
[12] Y. N. Fuadah, R. Magdalena, S. Palondongan, and N. Kumalasari, “Optimasi K-Nearest Neighbor Untuk Sistem Klasifikasi Kondisi Katarak,” TEKTRIKA-Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika, vol. 4, no. 1, pp. 16–25, 2019.
[13] S. S. Mahmood, S. Chaabouni, and A. Fakhfakh, “Improving Automated Detection of Cataract Disease through Transfer Learning using ResNet50,” Engineering, Technology & Applied Science Research, vol. 14, no. 5, pp. 17541–17547, Oct. 2024, doi: 10.48084/etasr.8530.
[14] S. Gayathri, S. Saran, P. S. Kumar, and I. P. Singh, “Cataract Disease Classification using Convolutional Neural Network Architectures,” in 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), IEEE, Mar. 2023, pp. 992–998. doi: 10.1109/ICEARS56392.2023.10085502.
[15] M. S. Junayed, M. B. Islam, A. Sadeghzadeh, and S. Rahman, “CataractNet: An Automated Cataract Detection System Using Deep Learning for Fundus Images,” IEEE Access, vol. 9, pp. 128799–128808, 2021, doi: 10.1109/ACCESS.2021.3112938.
[16] A. Raza, M. U. Khan, Z. Saeed, S. Samer, A. Mobeen, and A. Samer, “Classification of Eye Diseases and Detection of Cataract using Digital Fundus Imaging (DFI) and Inception-V4 Deep Learning Model,” in 2021 International Conference on Frontiers of Information Technology (FIT), IEEE, Dec. 2021, pp. 137–142. doi: 10.1109/FIT53504.2021.00034.
[17] M. A. Amrullah and M. I. Irawan, “Implementasi Jaringan Saraf Konvolusional dengan Inception-V3 untuk Deteksi Katarak Menggunakan Gambar Digital Funduskopi,” Jurnal Sains dan Seni ITS, vol. 12, no. 1, pp. A27–A33, 2023.
[18] A. Rusdy Prasetyo, Sussi, and B. Aditya, “Analisis Perbandingan Algoritma Support Vector Machine (SVM) Dan Convolutional Neural Network (CNN) Untuk Sistem Deteksi Katarak,” Jurnal Ilmiah Teknik Mesin, Elektro dan Komputer, vol. 3, no. 1, pp. 1–10, Mar. 2023, doi: 10.51903/juritek.v3i1.604.
[19] Y. Xiong, Z. He, K. Niu, H. Zhang, and H. Song, “Automatic Cataract Classification Based on Multi-feature Fusion and SVM,” in 2018 IEEE 4th International Conference on Computer and Communications (ICCC), IEEE, Dec. 2018, pp. 1557–1561. doi: 10.1109/CompComm.2018.8780617.
[20] M. Safaat, A. Sahari, and D. Lusiyanti, “Implementasi Metode K-Nearest Neighbor Untuk Mengklasifikasi Jenis Penyakit Katarak,” Jurnal Ilmiah Matematika Dan Terapan, vol. 17, no. 1, pp. 92–99, Jun. 2020, doi: 10.22487/2540766X.2020.v17.i1.15184.
[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.
[22] F. Ramadhani, D. Septiana, S. N. Amalia, P. M. Fadilah, and A. Satria, “Klasifikasi Risiko Gizi Buruk Pada Ibu Hamil Menggunakan Metode Random Forest,” Djtechno: Jurnal Teknologi Informasi, vol. 5, no. 2, pp. 370–380, Aug. 2024, doi: 10.46576/djtechno.v5i2.4815.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ilham Santoso, Ayub Michaelangelo Manurung, Egia Rosi Subhiyakto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).