IndoBERT Model Analysis: Twitter Sentiments on Indonesia's 2024 Presidential Election

  • Dwi Ismiyana Putri Universitas Bina Insani
  • Ari Nurul Alfian Universitas Bina Insani
  • Mardi Yudhi Putra Universitas Bina Insani
  • Putro Dwi Mulyo Universitas Bina Insani
Keywords: Election, IndoBERT, Sentiment Analysis, Twitter

Abstract

Elections are one of the key moments in a country's democracy. Indonesian elections have a significant impact on regional and global politics.  Twitter being one of the popular social media platforms becomes a powerful tool for political campaigns. This makes it an ideal source to analyze public opinion during the 2024 general election, particularly the upcoming Presidential Election (Pilpres). IndoBERT is the model chosen to analyse the sentiment from the dataset in this study using a zero-shot learning approach.  Based on the evaluation results, the accuracy value of the 2024 presidential election classification is 0.60 (60%), tends to predict with a good value in the positive label of 0.74 (74%) for F1-Score. This model is considered quite good at predicting negative labels but the results are not too optimal with a value of 0.49 (49%). Confusion Matrix in this IndoBERT model is more likely to label tweets with positive things, by detecting negative labels quite well.

Downloads

Download data is not yet available.

References

DATAREPORTAL, “TWITTER USERS, STATS, DATA & TRENDS,” We Are Social, 2023. https://datareportal.com/essential-twitter-stats?utm_source=DataReportal&utm_medium=Country_Article_Hyperlink&utm_campaign=Digital_2023&utm_term=Indonesia&utm_content=Facebook_Stats_Link (accessed Oct. 25, 2023).

I. Krismantari and N. Fitri Ramadhani, “Pemilu 2024 akan jadi pesta demokrasi terbesar di dunia: 5 hal yang perlu kamu ketahui,” The Conversation, 2023. https://theconversation.com/pemilu-2024-akan-jadi-pesta-demokrasi-terbesar-di-dunia-5-hal-yang-perlu-kamu-ketahui-211069 (accessed Oct. 25, 2023).

I. Kurniawan and A. Susanto, “Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019,” Eksplora Inform., vol. 9, no. 1, pp. 1–10, 2019, doi: 10.30864/eksplora.v9i1.237.

T. Patrio Sorongan, “Daftar 10 Negara Terluas di Dunia, Indonesia Nomor Berapa?,” CNBC Indonesia, 2023. https://cnbc.id/NlOCBq (accessed Oct. 24, 2023).

F. Zahria Emeraldien, R. Jefri Sunarsono, and R. Alit, “Twitter Sebagai Platform Komunikasi Politik Di Indonesia,” J. Teknol. dan Inf., vol. 14, no. 1, pp. 21–30, 2019, [Online]. Available: www.statisticbrain.com.

M. A. Muqsith, Pesan Politik di Media Sosial Twitter. Surabaya: Jakad Media Publishing, 2022.

A. Perdana, A. Hermawan, and D. Avianto, “Analisis Sentimen Terhadap Isu Penundaan Pemilu di Twitter Menggunakan Naive Bayes Clasifier,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 2, pp. 195–200, 2022, doi: 10.32736/sisfokom.v11i2.1412.

S. M. P. Tyas, R. Sarno, A. T. Haryono, and K. R. Sungkono, “A Robustly Optimized BERT using Random Oversampling for Analyzing Imbalanced Stock News Sentiment Data,” in 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 2023, pp. 897–902, doi: 10.1109/ICCoSITE57641.2023.10127725.

Biro Humas Lemhannas RI, “Pemilu 2024 Waktunya Demokrasi Gagasan, Bukan Demokrasi Pengkultusan,” Biro Humas Lemhannas RI, 2022. https://www.lemhannas.go.id/index.php/publikasi/press-release/1670-pemilu-2024-waktunya-demokrasi-gagasan-bukan-demokrasi-pengkultusan (accessed Oct. 24, 2023).

P. F. Sarumaha, “TANTANGAN DAN STRATEGI DALAM MEWUJUDKAN KESUKSESAN PEMILU 2024 DI NIAS SELATAN,” Bawaslu Nias Selatan, Kordiv PHL dan Humas, 2021. https://niasselatan.bawaslu.go.id/tantangan-dan-strategi-dalam-mewujudkan-kesuksesan-pemilu-2024-di-nias-selatan/ (accessed Oct. 24, 2023).

BBC NEWS INDONESIA, “Pemilu 2024: Pemilih muda, dinamika politik penuh kejutan, dan potensi polarisasi - Sejumlah hal yang perlu Anda ketahui,” 2023. https://www.bbc.com/indonesia/indonesia-66531834 (accessed Oct. 24, 2023).

L. Geni, E. Yulianti, and D. I. Sensuse, “Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using IndoBERT Language Models,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 9, no. 3, pp. 746–757, 2023, doi: 10.26555/jiteki.v9i3.26490.

B. Wilie et al., “IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding,” in Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10thInternational Joint Conference on Natural Language Processing, 2020, pp. 843–857, doi: https://doi.org/10.48550/arXiv.2009.05387.

G. Shetty, A. Nair, P. Vishwanath, and A. Stuti, “Sentiment Analysis and Classification on Twitter Spam Account Dataset,” Proc. - 2020 Adv. Comput. Commun. Technol. High Perform. Appl. ACCTHPA 2020, pp. 111–114, 2020, doi: 10.1109/ACCTHPA49271.2020.9213206.

S. Tabinda Kokab, S. Asghar, and N. Shehneela, “Transformer-based deep learning models for the sentiment analysis of social media data,” Array, vol. 14, p. 100157, 2022, doi: https://doi.org/10.1016/j.array.2022.100157.

Published
2024-07-07
How to Cite
[1]
D. I. Putri, A. N. Alfian, M. Y. Putra, and P. D. Mulyo, “IndoBERT Model Analysis: Twitter Sentiments on Indonesia’s 2024 Presidential Election”, JAIC, vol. 8, no. 1, pp. 7-12, Jul. 2024.
Section
Articles