Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma C4.5 dengan CRISP-DM

  • Suprayuandi Pratama Universitas Muhammadiyah Bangka Belitung
  • Iswandi Iswandi Universitas Muhammadiyah Bangka Belitung
  • Andre Sevtian Universitas Muhammadiyah Bangka Belitung
  • Tsabita Putri Anjani Universitas Muhammadiyah Bangka Belitung

Abstract

Because student data can be used to examine student academic accomplishment, or student achievement index data, student data is a very valuable database. Data on student performance is available at Muhammadiyah University of Bangka Belitung's Faculty of Engineering and Science, which houses study programs in computer science, civil engineering, and natural resource conservation. The data are analyzed using them. The C4.5 Algorithm is used in conjunction with a classification data mining technique on student data to forecast academic progress. A decision tree is constructed using algorithm C4.5. Decision trees are helpful for investigating data and uncovering undiscovered connections between numerous input factors and one goal variable. Performance outcomes are derived from the analysis results by categorizing student data. This serves as a resource for lecturers and students to enhance classroom learning and discipline among students.

Downloads

Download data is not yet available.

References

J. Han, ‘Data Mining: Concepts and Techniques Second Edition’, Jan. 2023.

P.-N. Tan, M. Steinbach, and V. Kumar, ‘Data mining cluster analysis: basic concepts and algorithms’, Introd. to data Min., pp. 487–533, 2013.

W. Crisnawaty Manalu, A. Muhazir, D. Setiawan, S. Informasi, S. Triguna Dharma, and T. Komputer, ‘Penerapan Data Mining Untuk Memprediksi Minat Masyarakat Terhadap Asuransi Jiwa Dengan Metode Algoritma C4.5’, J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 2, no. 1, pp. 169–178, Jan. 2023.

‘Visi, Misi & Tujuan - Universitas Muhammadiyah Bangka Belitung’. [Online]. Available: https://unmuhbabel.ac.id/visi-misi-tujuan/. [Accessed: 28-Feb-2023].

P. Prasetyawan, I. Ahmad, R. I. Borman, Ardiansyah, Y. A. Pahlevi, and D. E. Kurniawan, ‘Classification of the Period Undergraduate Study Using Back-propagation Neural Network’, in 2018 International Conference on Applied Engineering (ICAE), 2018, pp. 1–5.

M. A. Hasanah, S. Soim, and A. S. Handayani, ‘Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir’, J. Appl. Informatics Comput., vol. 5, no. 2, pp. 103–108, Oct. 2021.

S. A. A. Kharis and A. H. A. Zili, ‘Learning Analytics dan Educational Data Mining pada Data Pendidikan’, J. Ris. Pembelajaran Mat. Sekol., vol. 6, no. 1, pp. 12–20, Mar. 2022.

N. Tulus Ujianto and N. A. Ramdhan, ‘Implementasi Data Mining C4.5 dalam Mengukur Tingkat Kepuasan Mahasiswa terhadap Pelayanan Akademik’, J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 01, pp. 115–111, May 2022.

T. H. Hasibuan and D. Mahdiana, ‘Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Algoritma C4.5 Pada Uin Syarif Hidayatullah Jakarta’, SKANIKA Sist. Komput. dan Tek. Inform., vol. 6, no. 1, pp. 61–74, Jan. 2023.

J. A. Solano, D. J. Lancheros Cuesta, S. F. Umaña Ibáñez, and J. R. Coronado-Hernández, ‘Predictive models assessment based on CRISP-DM methodology for students performance in Colombia - Saber 11 Test’, Procedia Comput. Sci., vol. 198, pp. 512–517, Jan. 2022.

Published
2023-07-31
How to Cite
[1]
S. Pratama, I. Iswandi, A. Sevtian, and T. Anjani, “Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma C4.5 dengan CRISP-DM”, JAIC, vol. 7, no. 1, pp. 16-20, Jul. 2023.
Section
Articles