Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma C4.5 dengan CRISP-DM
Abstract
Because student data can be used to examine student academic accomplishment, or student achievement index data, student data is a very valuable database. Data on student performance is available at Muhammadiyah University of Bangka Belitung's Faculty of Engineering and Science, which houses study programs in computer science, civil engineering, and natural resource conservation. The data are analyzed using them. The C4.5 Algorithm is used in conjunction with a classification data mining technique on student data to forecast academic progress. A decision tree is constructed using algorithm C4.5. Decision trees are helpful for investigating data and uncovering undiscovered connections between numerous input factors and one goal variable. Performance outcomes are derived from the analysis results by categorizing student data. This serves as a resource for lecturers and students to enhance classroom learning and discipline among students.
Downloads
References
J. Han, ‘Data Mining: Concepts and Techniques Second Edition’, Jan. 2023.
P.-N. Tan, M. Steinbach, and V. Kumar, ‘Data mining cluster analysis: basic concepts and algorithms’, Introd. to data Min., pp. 487–533, 2013.
W. Crisnawaty Manalu, A. Muhazir, D. Setiawan, S. Informasi, S. Triguna Dharma, and T. Komputer, ‘Penerapan Data Mining Untuk Memprediksi Minat Masyarakat Terhadap Asuransi Jiwa Dengan Metode Algoritma C4.5’, J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 2, no. 1, pp. 169–178, Jan. 2023.
‘Visi, Misi & Tujuan - Universitas Muhammadiyah Bangka Belitung’. [Online]. Available: https://unmuhbabel.ac.id/visi-misi-tujuan/. [Accessed: 28-Feb-2023].
P. Prasetyawan, I. Ahmad, R. I. Borman, Ardiansyah, Y. A. Pahlevi, and D. E. Kurniawan, ‘Classification of the Period Undergraduate Study Using Back-propagation Neural Network’, in 2018 International Conference on Applied Engineering (ICAE), 2018, pp. 1–5.
M. A. Hasanah, S. Soim, and A. S. Handayani, ‘Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir’, J. Appl. Informatics Comput., vol. 5, no. 2, pp. 103–108, Oct. 2021.
S. A. A. Kharis and A. H. A. Zili, ‘Learning Analytics dan Educational Data Mining pada Data Pendidikan’, J. Ris. Pembelajaran Mat. Sekol., vol. 6, no. 1, pp. 12–20, Mar. 2022.
N. Tulus Ujianto and N. A. Ramdhan, ‘Implementasi Data Mining C4.5 dalam Mengukur Tingkat Kepuasan Mahasiswa terhadap Pelayanan Akademik’, J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 01, pp. 115–111, May 2022.
T. H. Hasibuan and D. Mahdiana, ‘Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Algoritma C4.5 Pada Uin Syarif Hidayatullah Jakarta’, SKANIKA Sist. Komput. dan Tek. Inform., vol. 6, no. 1, pp. 61–74, Jan. 2023.
J. A. Solano, D. J. Lancheros Cuesta, S. F. Umaña Ibáñez, and J. R. Coronado-Hernández, ‘Predictive models assessment based on CRISP-DM methodology for students performance in Colombia - Saber 11 Test’, Procedia Comput. Sci., vol. 198, pp. 512–517, Jan. 2022.
Copyright (c) 2023 Suprayuandi Pratama, Iswandi Iswandi, Andre Sevtian, Tsabita Putri Anjani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).