Pemetaan UMKM dalam Upaya Pengentasan Kemiskinan dan Penyerapan Tenaga Kerja Menggunakan Algoritma K-Means

  • Herwinda Kurniadewi Universitas Singaperbangsa Karawang
  • Rijal Abdul Hakim Universitas Singaperbangsa Karawang
  • Mohamad Jajuli Universitas Singaperbangsa Karawang
  • Jajam Haerul Jaman Universitas Singaperbangsa Karawang
Keywords: Algoritma K-Means, Clustering, Python, silhouette coefficient

Abstract

Covid pandemic created an economic crisis. Increase the poverty rate by double digits in one year in Indonesia. Covid pandemic has also had an impact on Indonesia's employment conditions, such as finding it difficult to find work. Absorption of labor has a close correlation with poverty. The workforce has a significant influence on the poverty level. One of the regencies in West Java which has a high poverty rate and job seekers is increasing compared to the previous year, Purwakarta Regency. Poverty alleviation by developing MSMEs has good potential. The development of MSMEs will be able to absorb more workers and increase people's income so that it can encourage the rate of economic growth. In this study using the CRISP-DM methodology. In this study, MSMEs in Purwakarta Regency were grouped based on location, number of MSMEs, number of poor people and number of job seekers by using the k-means algorithm and mapping using python. The results of the grouping obtained 3 clusters, namely clusters as many as 6 districts, clusters as many as 8 districts and clusters as many as 3 districts. To determine the performance of the model, an evaluation of the silhouette coefficient which obtained a value of 0.45.

Downloads

Download data is not yet available.

References

Fitriani, F.F. Setahun Covid-19 di Indonesia: 2,76 Juta Orang Jadi Warga Miskin. Bisnis.com akses 2021, 02 Maret.

X. Che, B. Zhu, and P. Wang, ‘Assessing global energy poverty: An integrated approach’, Energy Policy, vol. 149, no. C, 2021, Accessed: Aug. 30, 2022. [Online]. Available: https://ideas.repec.org/a/eee/enepol/v149y2021ics0301421520308107.html.

M. Putri, Warga Miskin Bertambah Jadi 74 Juta Orang per September 2021. Tirto.id. Akses 16 September 2021

L.J. Sembiring, RI Dilanda Kemiskinan Ekstrim, Terbanyak Jabar & Jatim! CNBC Indonesia. Akses 01 September 2021

D. H. Jayani, Iklan Lowongan Kerja Menurun pada Agustus 2021. databoks.

I. Wibowo, Efek Pandemi, Pencari Kerja Makin Banyak. Medcom.id.

I. N. Jelita, Pelamar Kerja di Jobstreet Naik 37% selama Pandemi. Media Indonesia.

V. F. Thomas, Susahnya Mencari Kerja saat Pandemi COVID-19 & Pengangguran Naik. Tirto.id.

A. Rahma, Gara-Gara Covid-19, Serapan Tenaga Kerja Industri Pengolahan Turun. Liputan6.

N.Azizah, Nasib angkatan kerja baru di pusaran resesi. Alinea.id.

A. E. Pamuji, Pengaruh pendidikan, pertumbuhan ekonomi, penyerapan tenaga kerja, serta kemiskinan di kabupaten kota provinsi jawa timur tahun 2008-2012. Jurnal Ekonomi dan Bisnis Islam.

Ansori, and J. Priyono, “Analisis Pengaruh Penyerapan Tenaga Kerja dan. Upah Minimum Pekerja terhadap Kemiskinan di Provinsi Jawa Timur Tahun 2009-2015”, Jurnal Ekonomi dan Bisnis, vol.1 no.3, 2018.

F. Rozi, Y. Yulmardi, and E. Umiyati, “Pengaruh pertumbuhan ekonomi, upah minimum dan jumlah tenaga kerja terhadap kemiskinan di Kota Jambi Tahun 2000 – 2017”, JELS, vol. 8, no. 1, pp. 12-25, Mar. 2019.

N. H. Bustam, ‘Pengaruh Jumlah Unit, PDB dan Investasi UMKM Terhadap Penyerapan Tenaga Kerja di Indonesia Periode 2009-2013’, Kutubkhanah, vol. 19, no. 2, Art. no. 2, Jan. 2017, doi: 10.24014/kutubkhanah.v19i2.2555.

Y. R. Suci, “Perkembangan Umkm (Usaha Mikro Kecil Dan Menengah) Di Indonesia”, cano, vol. 6, no. 1, pp. 51–58, Mar. 2017.

H. Y. Heraldi, N. C. Aprilia, and H. Pratiwi, ‘Analisis Cluster Intensitas Kebencanaan di Indonesia Menggunakan Metode K-Means’, Indones. J. Appl. Stat., vol. 2, no. 2, Art. no. 2, Dec. 2019, doi: 10.13057/ijas.v2i2.34911.

P. Sari, B. Pramono, and L. O. H. S. Sagala, ‘Improve K-Means Terhadap Status Nilai Gizi Pada Balita’, semanTIK, vol. 3, no. 1, Art. no. 1, Jun. 2017, doi: 10.55679/semantik.v3i1.2653.

D. E. Kurniawan and A. Fatulloh, ‘Clustering of Social Conditions in Batam, Indonesia Using K-Means Algorithm and Geographic Information System’, Int. J. Earth Sci. Eng. IJEE, vol. 10, no. 5, pp. 1076–1080, 2017.

N. I. Febianto and N. Palasara, ‘Analisa Clustering K-Means Pada Data Informasi Kemiskinan Di Jawa Barat Tahun 2018’, J. Sisfokom Sist. Inf. Dan Komput., vol. 8, no. 2, Art. no. 2, Aug. 2019, doi: 10.32736/sisfokom.v8i2.653.

P. Puntoriza and C. Fibriani, ‘Analisis Persebaran UMKM Kota Malang Menggunakan Cluster K-means’, JOINS J. Inf. Syst., vol. 5, no. 1, Art. no. 1, May 2020, doi: 10.33633/joins.v5i1.3469.

D. Astuti, “Penentuan Strategi Promosi Usaha Mikro Kecil Dan Menengah (UMKM) Menggunakan Metode CRISP-DM dengan Algoritma K-Means Clustering”, INISTA, vol. 1, no. 2, pp. 60-72, May 2019.

I. Sutoyo, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik”, pilar, vol. 14, no. 2, pp. 217-224, 1.

M. R. Ridlo, S. Defiyanti, A. Primajaya, M. R. Ridlo, S. Defiyanti, and A. Primajaya, ‘Implementasi Algoritme K-Means Untuk Pemetaan Produktivitas Panen Padi Di Kabupaten Karawang’, CITEE 2017, pp. 426–433, 2017.

B. Wira, A. E. Budianto, And A. S. Wiguna, “Implementasi Metode K-Medoids Clustering Untuk Mengetahui Pola Pemilihan Program Studi Mahasiwa Baru Tahun 2018 Di Universitas Kanjuruhan Malang”, Rainstek, Vol. 1, No. 3, Pp. 53 - 68, Sep. 2019.

A. Ariyanto, D. E. Kurniawan, and A. Fatulloh, ‘Rancang Bangun Aplikasi WebGIS untuk Pemetaan Kondisi Sosial Ekonomi Kota Batam’, J. Appl. Inform. Comput. JAIC, vol. 2, no. 1, Art. no. 1, 2018, doi: 10.30871/jaic.v2i1.904.

Published
2022-08-30
How to Cite
[1]
H. Kurniadewi, R. Hakim, M. Jajuli, and J. Jaman, “Pemetaan UMKM dalam Upaya Pengentasan Kemiskinan dan Penyerapan Tenaga Kerja Menggunakan Algoritma K-Means”, JAIC, vol. 6, no. 2, pp. 113-119, Aug. 2022.
Section
Articles