Analysis of BRIsat Investment Success from Financial and Nonfinancial Perspectives
DOI:
https://doi.org/10.30871/jaic.v10i1.11895Keywords:
cost benefit analysis, Naïve Bayes, sentiment analysis, BRIsat, information technology investmentAbstract
Investment in information technology within the banking sector requires not only financial viability but also public acceptance, particularly for state-owned enterprises (SOEs) that carry both commercial and social mandates. This study aims to evaluate the success of PT Bank Rakyat Indonesia (Persero) Tbk.’s BRIsat satellite investment from both financial and nonfinancial perspectives. A Cost–Benefit Analysis (CBA) was employed to assess financial feasibility using BRI’s publicly available financial statements from 2014 to 2024, while sentiment analysis using the Naive Bayes algorithm was conducted to examine public perception based on social media data from platform X covering the period 2016–2024. The financial analysis indicates that the BRIsat investment is financially feasible, with a Return on Investment (ROI) of 2.58%, a Payback Period of 6.2 years, a positive Net Present Value (NPV) of IDR 166,161,960, and a Benefit Cost Ratio (BCR) of 184.9, suggesting that every IDR 1 invested generates IDR 184.9 in economic benefits. From the nonfinancial perspective, sentiment analysis of 10,066 valid tweets reveals that 55.90% of public sentiment is negative (5,627 tweets), while 44.10% is positive (4,439 tweets), with the Naive Bayes model achieving an accuracy of 96.76%. Positive sentiment is primarily associated with keywords such as “successful,” “fast,” and “service,” reflecting appreciation for BRIsat as a strategic innovation, whereas negative sentiment is dominated by terms such as “error,” “failed,” and “disruption,” indicating persistent technical issues in digital banking services. These findings highlight a clear contradiction between the strong financial performance of the BRIsat investment and the predominantly negative public perception of service quality. The study implies that the success of large-scale technology investments in SOEs cannot be assessed solely through financial metrics, but must be accompanied by continuous improvements in operational reliability and digital service quality to ensure sustainable value creation and public trust.
Downloads
References
[1] GoodStats, “Tingkat Penetrasi Internet di Indonesia Konsisten Meningkat.”
[2] Otoritas Jasa Keuangan, Bijak Ber-Electronic Banking. Jakarta, 2015.
[3] A. H. Gunawan, I. G. A. K. R. Handayani, and L. Karjoko, “Regulatory Approach in Addressing the Availability and Affordability of Telecommunication Services in Indonesia,” 2024. [Online]. Available: https://www.jisem-journal.com/
[4] Laporan Tahunan BRI, “The Biggest National Payment Bank dengan Layanan Teknologi Menjangkau Pelosok Negeri Guna Mewujudkan Nawa Cita dalam Membangun Ekonomi Kerakyatan,” 2015.
[5] BUMN, “Kontribusi Bisnis BUMN.”
[6] BUMN, “Perubahan Ketiga atas Undang-Undang Nomor 19 Tahun 2003 tentang Badan Usaha Milik Negara.”
[7] Z. Bodie, A. Kane, and A. J. Marcus, Investment: Twelfth Edition, 12th ed. United States of America: McGraw-Hill Education, 2021.
[8] F. K. . Reilly, K. C. . Brown, and S. J. . Leeds, Investment analysis & portfolio management. Cengage, 2019.
[9] L. K. K. C. Dewi, I. G. A. P. D. Putri, and L. Yupita, “Analisis Manfaat Investasi Teknologi Informasi Nirmala Hadir pada Koperasi Nirmala,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 5, no. 2, Sep. 2023.
[10] L. H. Pedersen, S. Fitzgibbons, and L. Pomorski, “Responsible investing: The ESG-efficient frontier,” J financ econ, pp. 572–597, 2021, doi: 10.1016/j.jfineco.2020.11.001.
[11] J. B. B. Pea-Assounga, H. Yao, G. Mulindwa Bahizire, P. D. R. Bambi, and J. D. N. Ngapey, “Effect of financial innovation and stakeholders’ satisfaction on investment decisions: Does internet security matter?,” Heliyon, vol. 10, 2024, doi: 10.1016/j.heliyon.2024.e27242.
[12] A. Zein and C. Rozali, “Information Technology Investment Assessment Using Val IT Framework,” International Journal of Engineering, Science and Information Technology, vol. 4, no. 4, pp. 57–62, 2024, doi: 10.52088/ijesty.v4i4.572.
[13] P. A. S. A. Pratiwi, N. M. Estiyanti, and N. M. Artana, “Analisis Investasi Teknologi Informasi Satelit BRISat Pada PT Bank Rakyat Indonesia (Persero) Tbk,” Jurnal Teknologi Informasi dan Komputer, vol. 6, pp. 359–362, 2020, doi: https://doi.org/10.36002/jutik.v6i3.1164.
[14] N. Lubis, Hardi, and S. Maryanti, “Analisis Perbandingan Kinerja Keuangan Bank Rakyat Indonesia (Persero) Tbk (Sebelum dan Sesudah Diluncurkan Satelit BRISat),” Jurnal Ilmiah Ekonomi dan Bisnis, vol. 20, pp. 46–52, 2023, doi: https://doi.org/10.31849/jieb.v20i1.10065.
[15] N. M. Estiyanti, N. M. Wiranti, and E. G. A. Dewi, “Financial Analysis of Information Technology Investments: ‘Assessing Benefits through Cost-Benefit Analysis and Ranti’s Generic IS/IT Business Value Approach,’” JIIP (Jurnal Ilmiah Ilmu Pendidikan), vol. 7, no. 2, pp. 1287–1292, Feb. 2024, [Online]. Available: http://Jiip.stkipyapisdompu.ac.id
[16] A. U. El Majid and R. Nuari, “Performance Comparison Of Bert Metrics And Classical Machine Learning Models (SVM, NAIVE BAYES) For Sentiment Analysis,” JURNAL INOVTEK POLBENG, vol. 10, no. 2, p. 2025, 2025.
[17] S. Turgay, M. Han, S. Erdoğan, E. S. Kara, and R. Yilmaz, “Evaluating the Predictive Modeling Performance of Kernel Trick SVM, Market Basket Analysis and Naive Bayes in Terms of Efficiency,” Wseas Transactions On Computers, vol. 23, pp. 56–66, Apr. 2024, doi: 10.37394/23205.2024.23.6.
[18] D. Purnamasari et al., Pengantar Metode Analisis Sentimen, 1st ed. Depok: Penerbit Gunadarma, 2023.
[19] Laporan Tahunan BRI, “Senantiasa Berinovasi dalam Melayani Melalui Integritas dan Dukungan Teknologi Terkini,” 2014.
[20] Laporan Tahunan BRI, “Kerja Nyata bagi Negeri Membangun UMKM Unggul di Era Digital,” 2016.
[21] Laporan Tahunan BRI, “Membangun Negeri melalui Integrated Banking Solution &Transformasi UMKM,” 2017.
[22] Laporan Tahunan BRI, “Akselerasi Pertumbuhan UMKM melalui Digitalisasi Layanan Perbankan untuk Mendukung Pemberdayaan Ekonomi Masyarakat,” 2018.
[23] Laporan Tahunan BRI, “Tak Pernah Berhenti Menumbuhkembangkan dan Memberdayakan yang Kecil Menjadi Semakin Berarti Bagi Negeri,” 2019.
[24] Laporan Tahunan BRI, “125 Tahun BRI Menyelamatkan UMKM Mengubah Kesulitan Menjadi Ketangguhan,” 2020.
[25] Laporan Tahunan BRI, “Digitalisasi: Go Smaller, Go Shorter, Go Faster,” 2021.
[26] Laporan Tahunan BRI, “Memperluas Jangkauan, Memberi Kemudahan, Semakin Tumbuh & Tangguh,” 2022.
[27] Laporan Tahunan BRI, “Transformasi Berkelanjutan untuk Tumbuh Semakin Kuat dan Hebat,” 2023.
[28] Laporan Tahunan BRI, “Melanjutkan Transformasi, BRI Semakin Brilian dan Cemerlang,” 2024.
[29] K. Anam, N. M. Estiyanti, and I. M. Artana, “Analisis Investasi Teknologi Informasi Studi Kasus PT Bank Danamon Indonesia Tbk,” Jurnal Teknologi Informasi dan Komputer, vol. 7, no. 3, pp. 235–239, Oct. 2021.
[30] N. M. Estiyanti, I. G. A. M. N. Parmitasuari, and I. G. J. E. Putra, “Information Technology Investment Benefit Analysis Satellite T3S at PT Telkom Indonesia (Persero) Tbk,” Jurnal EK&BI, vol. 6, p. 7443, 2023, doi: https://doi.org/10.37600/ekbi.v6i1.718.
[31] A. A. M. Putra, Islamiyah, and M. L. Jundillah, “Analisis Sentimen Pengguna Youtube Terhadap Uang Baru Tahun Emisi 2022 Menggunakan Metode Naïve Bayes Classifier,” Adopsi Teknologi dan Sistem Informasi (ATASI), vol. 3, no. 1, pp. 17–27, Jun. 2024, doi: 10.30872/atasi.v3i1.1177.
[32] M. A. Palomino and F. Aider, “Evaluating the Effectiveness of Text Pre-Processing in Sentiment Analysis,” Applied Sciences (Switzerland), vol. 12, 2022, doi: 10.3390/app12178765.
[33] A. H. Nasution and A. Onan, “ChatGPT Label: Comparing the Quality of Human-Generated and LLM-Generated Annotations in Low-Resource Language NLP Tasks,” IEEE Access, vol. 12, pp. 71876–71900, 2024.
[34] M. Umair and E. R. Susanto, “Analisis Sentimen Ulasan Pengguna Pada Aplikasi BRImo BRI Menggunakan Metode Klasifikasi Algoritma Naive Bayes,” Jurnal Media Informatika Budidarma, vol. 8, no. 2, p. 1149, Apr. 2024, doi: 10.30865/mib.v8i2.7381.
[35] Y. Azarya and I. Budi, “Analisis Sentimen Berbasis Aspek Aplikasi Brimo berdasarkan Ulasan Pengguna di Google Playstore,” The Indonesian Journal of Computer Science, vol. 14, no. 1, Feb. 2025, doi: 10.33022/ijcs.v14i1.4613.
[36] E. D. N. Sari and Irhamah, “Analisis Sentimen Nasabah Pada Layanan Perbankan Menggunakan Metode Regresi Logistik Biner, Naïve Bayes Classifier (NBC), dan Support Vector Machine (SVM),” Jurnal Sains Dan Seni ITS, vol. 8, no. 2, pp. 2337–3520, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 I Gusti Ayu Agung Wiwin Adyasari, I Gst. Agung Pramesti Dwi Putri, Eka Grana Aristyana Dewi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








