Weight Estimation of Broiler Ducks Based on Image Processing and Machine Learning with IoT Integration
DOI:
https://doi.org/10.30871/jaic.v10i1.11259Keywords:
Duck weight estimation, Image processing, IoT, Precision livestock farming, Support Vector Regression (SVR)Abstract
The broiler duck farming industry in Indonesia faces challenges in efficiently monitoring body weight, as traditional manual weighing methods are labor-intensive, time-consuming, and stressful for the animals. To address this issue, this study aims to develop a non-invasive and automated weight estimation system that integrates digital image processing, machine learning, and Internet of Things (IoT) technologies. The methodology involves acquiring multi-angle images of ducks, applying preprocessing steps such as resizing, normalization, and contrast enhancement, and extracting hand-crafted features, including Histogram of Oriented Gradients (HOG) and HSV color histograms. These features are then fused, reduced via Principal Component Analysis (PCA), and processed using a Support Vector Regression (SVR) model with optimized hyperparameters for weight prediction. While previous studies have focused on cattle, broilers, or fish, research specifically targeting meat-type ducks remains limited, particularly those that combine image-based regression with IoT-enabled real-time monitoring. Experimental results demonstrate that the proposed system achieves a mean absolute error (MAE) of approximately 110 grams on the validation set, with per-duck averaging improving stability compared to per-image predictions. Visualization through scatter plots, boxplots, and learning curves further confirms that the model effectively captures general weight distribution trends but exhibits higher errors in certain mid-weight ranges. The integration with IoT facilitates continuous, stress-free monitoring of duck growth, underscoring the system’s potential as a practical and sustainable solution for precision livestock farming.
Downloads
References
[1] Y. Zhao et al., “Review on image-based animals weight weighing,” Comput. Electron. Agric., vol. 215, no. July, p. 108456, 2023, doi: 10.1016/j.compag.2023.108456.
[2] G. Gebreyesus, V. Milkevych, J. Lassen, and G. Sahana, “Supervised learning techniques for dairy cattle body weight prediction from 3D digital images,” Front. Genet., vol. 13, no. January, pp. 1–15, 2023, doi: 10.3389/fgene.2022.947176.
[3] M. R. H. Hossain, R. Islam, S. R. McGrath, M. Z. Islam, and D. Lamb, “Learning-based estimation of cattle weight gain and its influencing factors,” Comput. Electron. Agric., vol. 231, no. January, p. 110033, 2025, doi: 10.1016/j.compag.2025.110033.
[4] R. J. Garro, C. S. Wilson, D. L. Swain, A. J. Pordomingo, and S. Wibowo, “A systematic literature review on the applications of federated learning and enabling technologies for livestock management,” Comput. Electron. Agric., vol. 234, no. March, p. 110180, 2025, doi: 10.1016/j.compag.2025.110180.
[5] E. Samperio, I. Lidón, R. Rebollar, M. Castejón-Limas, and C. Álvarez-Aparicio, “Lambs’ live weight estimation using 3D images,” Animal, vol. 15, no. 5, p. 100212, 2021, doi: 10.1016/j.animal.2021.100212.
[6] H. Zhang, Y. Zhang, K. Niu, and Z. He, “Neural network-based method for contactless estimation of carcass weight from live beef images,” Comput. Electron. Agric., vol. 229, no. December 2024, p. 109830, 2025, doi: 10.1016/j.compag.2024.109830.
[7] N. Selvamuthukumaran, E. S. J, K. B. Thriambika, and V. B. B, “Intelligent Animal Detection System Using IOT And Deep Learning,” no. 04, pp. 2433–2438, 2021.
[8] S. A. Siddiqui, A. Ahmad, and N. Fatima, “IoT-based disease prediction using machine learning,” Comput. Electr. Eng., vol. 108, no. March, p. 108675, 2023, doi: 10.1016/j.compeleceng.2023.108675.
[9] T. Kushartadi, M. A. Laagu, and M. Asvial, “Design and Implementation of The Smart Weighing Precision Livestock Monitoring Technology based on the Internet of Things (IoT),” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 4, pp. 1438–1448, 2023, doi: 10.18517/ijaseit.13.4.18557.
[10] M. R. Bhuiyan and P. Wree, “Animal Behavior for Chicken Identification and Monitoring the Health Condition Using Computer Vision: A Systematic Review,” IEEE Access, vol. 11, no. October, pp. 126601–126610, 2023, doi: 10.1109/ACCESS.2023.3331092.
[11] Ardi Wijaya, B. R. Daryono, Rozali Toyib, and Yovi Apridiansyah, “Analisis Pengenalan Pola Pada Citra Digital Untuk Prediksi Berat Buah Sawit,” Decod. J. Pendidik. Teknol. Inf., vol. 4, no. 3, pp. 713–724, 2024, doi: 10.51454/decode.v4i3.481.
[12] Sten Dofanky Mooy, Andrew Delfistian Dethan, and Yampi R Kaesmetan, “Identifikasi Berat Badan Berdasarkan Citra Foto Menggunakan Metode Body Surface Area,” SABER J. Tek. Inform. Sains dan Ilmu Komun., vol. 2, no. 3, pp. 89–99, 2024, doi: 10.59841/saber.v2i3.1332.
[13] I. Supiyani, J. Haerul, and T. N. Padilah, “Pengolahan Citra Digital Prediksi Bobot Sapi Menggunakan Ekstraksi Fitur Canny Dan Klasifikasi K-Nearest Neighbor,” Nusant. J. Ilmu …, vol. 8, no. 7, pp. 2204–2212, 2021.
[14] A. Ruchay, V. Kober, K. Dorofeev, V. Kolpakov, A. Gladkov, and H. Guo, “Live Weight Prediction of Cattle Based on Deep Regression of RGB-D Images,” Agric., vol. 12, no. 11, 2022, doi: 10.3390/agriculture12111794.
[15] D. Asahar Johar, “Pengolahan Citra Digital Untuk Penentuan Bobot Sapi Menggunakan Metode Sobel,” J. Sist. Informasi, Teknol. Informasi, dan Komput., vol. 12, no. 2, pp. 16–26, 2022.
[16] R. Mahdaliza and B. Sugandi, “Prediksi Berat dan Harga Buah Mengunakan Sensor Visual,” J. Integr., vol. 13, no. 1, pp. 10–14, 2021, doi: 10.30871/ji.v13i1.2916.
[17] R. Firmasnyah, “Prototype Alat Pengukur Berat Badan Berbasis Computer Vision Dengan Menggunakan Regresi Linier,” 2023.
[18] S. Ichikawa, M. Hamada, and H. Sugimori, “A deep-learning method using computed tomography scout images for estimating patient body weight,” Sci. Rep., vol. 11, no. 1, pp. 1–9, 2021, doi: 10.1038/s41598-021-95170-9.
[19] V. Y. Mahendra, A. A. Riadi, and E. Evanita, “Aplikasi Pengolahan Citra Digital Menentukan Bobot Sapi Dengan Metode Titik Berat Berbasis Android,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 7, no. 1, p. 88, 2022, doi: 10.30645/jurasik.v7i1.419.
[20] N. T. Duc et al., “Image-based phenotyping of seed architectural traits and prediction of seed weight using machine learning models in soybean,” Front. Plant Sci., vol. 14, no. September, pp. 1–15, 2023, doi: 10.3389/fpls.2023.1206357.
[21] L. Nabila, E. Suffa, U. Lestari, and E. Susanti, “Identifikasi Citra Daging Ayam Berformalin Menggunakan Metode Grey Level Co-Occurrence Matrix (Glcm) Dan K-Nearest Neighbor (Knn),” J. Scr., vol. 9, no. 2, pp. 133–141, 2021.
[22] F. Haikal, E. S. J. Atmadji, S. Kautsar, and N. S. Wibowo, “Sistem Monitoring Berat Tanaman Pada Farmbot Dengan Citra Digital Menggunakan Metode YOLO dan Regresi Polinomial,” J. Ilm. Inov., vol. 24, no. 2, pp. 122–126, 2024.
[23] H. Fitriyah, “Pengukuran Panjang-Berat Ikan dan Sayuran pada Budikdamber (Budi Daya Ikan dalam Ember) Menggunakan Visi Komputer dan Regresi Linier,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 8–14, 2020, doi: 10.47970/siskom-kb.v4i1.166.
[24] S. F. Gumelar, “xiv ABSTRACT Cow Weight Estimation Using Convolutional Neural Network and Regression Method,” pp. 5–6, 2021.
[25] T. R. Awasthi, A. Morshed, and D. L. Swain, “A machine learning approach to simulate cattle growth at pasture using remotely collected walk-over weights,” Agric. Syst., vol. 226, no. March, p. 104332, 2025, doi: 10.1016/j.agsy.2025.104332.
[26] M. A. Ahmed, M. S. Hossain, W. Rahman, A. H. Uddin, and M. T. Islam, “An advanced Bangladeshi local fish classification system based on the combination of deep learning and the internet of things (IoT),” J. Agric. Food Res., vol. 14, no. February, p. 100663, 2023, doi: 10.1016/j.jafr.2023.100663.
[27] Z. B. Ozger, P. Cihan, and E. Gokce, “A systematic review of IoT technology and applications in animals,” Kafkas Univ. Vet. Fak. Derg., vol. 30, no. 4, pp. 411–431, 2024, doi: 10.9775/kvfd.2024.31866.
[28] A. C. Tran, T. T. T. Kim, and H. T. Nguyen, “An Image-Based Rice Weighing Estimation Approach on Clock Type Weighing Scale Using Deep Learning and Geometric Transformations,” Adv. Technol. Innov., vol. 8, no. 2, pp. 100–110, 2023, doi: 10.46604/aiti.2023.10926.
[29] S. Lv et al., “JTF-SqueezeNet: A SqueezeNet network based on joint time-frequency data representation for egg-laying detection in individually caged ducks,” Poult. Sci., vol. 104, no. 2, p. 104782, 2025, doi: 10.1016/j.psj.2025.104782.
[30] M. Y. Shams et al., “Automated on-site broiler live weight estimation through YOLO-based segmentation,” Smart Agric. Technol., vol. 10, no. December 2024, p. 100828, 2025, doi: 10.1016/j.atech.2025.100828.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Sindhu Hari Mukti, Ardi Pujiyanta ardi, Abdul Fadlil

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








