Comparative Study of Support Vector Regression and Long Short-Term Memory for Stock Price Prediction

Authors

  • Aviva Pradasyah Universitas Amikom Yogyakarta
  • Anna Baita Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i4.9425

Keywords:

BBRI, time series, LSTM, Stock Price, SVR

Abstract

This study aims to compare the performance of two machine learning algorithms, Long Short-Term Memory (LSTM) and Support Vector Regression (SVR), in predicting the stock prices of PT Bank Rakyat Indonesia (BBRI) using daily historical data from January 1, 2020, to January 10, 2025. The data were processed using a 60-day sliding window technique and normalized with MinMaxScaler. Model performance was evaluated using Mean Absolute Error (MAE), Mean Squared Error (MSE), and the coefficient of determination (R²) across five independent trials (5-fold trials). The evaluation results show that SVR outperforms in short-term prediction, with an average MAE of 0.0281, MSE of 0.0014, and R² of 0.9072. Meanwhile, LSTM records an average MAE of 0.0312, MSE of 0.0015, and R² of 0.8962, but achieves better performance in medium-term predictions, with a smaller average error of Rp228.02 compared to Rp242.52 from SVR. Both models demonstrate strong generalization capabilities on test data without signs of overfitting. Based on these findings, SVR is recommended for stable short-term forecasts, while LSTM is better suited for medium-term predictions involving complex trend patterns.

Downloads

Download data is not yet available.

References

[1] R. Luthfiansyah and B. Wasito, “Penerapan Teknik Deep Learning (Long Short Term Memory) dan Pendekatan Klasik (Regresi Linier) dalam Prediksi Pergerakan Saham BRI,” J. Inform. dan Bisnis, vol. 12, no. 2, pp. 42–54, 2023, doi: 10.46806/jib.v12i2.1059.

[2] M. Magdalena, A. P. Safira, and I. Maulida, “Penerapan Algoritma Linear Regression Dalam Memprediksi Harga Saham Bank BRI,” J. Sains dan Teknol. Inf., vol. 2, no. 3, pp. 88–102, 2024, doi: https://doi.org/10.62951/switch.v2i3.119.

[3] W. C. Utomo, “Prediksi Pergerakan Saham BBRI ditengah Issue Ancaman Resesi 2023 dengan Pendekatan Machine Learning,” J. Teknol. dan Manaj. Inform., vol. 9, no. 1, pp. 20–27, 2023, doi: 10.26905/jtmi.v9i1.9135.

[4] W. Hastomo, Aminudin, and Adhitio Satyo Bayangkari Karno, “Kemampuan Long Short Term Memory Machine Learning Dalam Proyeksi Saham Bank Bri Tbk,” Univ. Gunadarma Jl. Margonda Raya, vol. 4, no. 1, p. 16424, 2020.

[5] M. S. Senapan and R. Agustina, “Analisis Fundamental dan Teknikal Saham BCA dan BRI (Tahun 2019-2021),” Semin. Nas. Akunt. dan Call Pap., vol. 3, no. 1, pp. 57–67, 2023, doi: 10.33005/senapan.v3i1.285.

[6] D. ciptaning Lokiteswara setya wardhani, “Analisis Fundamental Yang Berpengaruh Pada Harga Saham Bank Rakyat Indonesia,” J. Akunt. Bisnis dan Ekon., vol. 8, no. 2, pp. 2315–2321, 2023, doi: 10.33197/jabe.vol8.iss2.2022.1385.

[7] S. Sudriyanto, F. Syahro, and N. Fitriani, “Perbandingan Performa Model Machine Learning Support Vector Machine, Neural Network, Dan K-Nearest Neighbors Dalam Prediksi Harga Saham,” J. Adv. Res. Inform., vol. 2, no. 1, pp. 13–21, 2023, doi: 10.24929/jars.v2i1.2983.

[8] P. Triya, N. Suarna, and N. Dienwati Nuris, “Penerapan Machine Learning Dalam Melakukan Prediksi Harga Saham Pt. Bank Mandiri (Persero) Tbk Dengan Algoritma Linear Regression,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 1207–1214, 2024, doi: 10.36040/jati.v8i1.8958.

[9] A. W. Ishlah, S. Sudarno, and P. Kartikasari, “Implementasi Gridsearchcv Pada Support Vector Regression (Svr) Untuk Peramalan Harga Saham,” J. Gaussian, vol. 12, no. 2, pp. 276–286, 2023, doi: 10.14710/j.gauss.12.2.276-286.

[10] D. I. Puteri, “Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 11, no. 1, pp. 35–43, 2023, doi: 10.34312/euler.v11i1.19791.

[11] D. M. U. Atmaja and A. R. Hakim, “Peramalan Harga Mata Uang Kripto Solana Menggunakan Metode Support Vector Regression (Svr),” J. Media Elektro, vol. XI, no. 2, pp. 97–104, 2022, doi: 10.35508/jme.v0i0.8117.

[12] A. Khumaidi, R. Raafi’udin, and I. P. Solihin, “Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung,” J. Telemat., vol. 15, no. 1, pp. 13–18, 2020, doi: 10.61769/telematika.v15i1.340.

[13] A. Aulia, B. Aprianti, Y. Supriyanto, and C. Rozikin, “Prediksi Harga Emas dengan Menggunakan Algoritma Support Vector Regression (Svr) dan Linear Regression,” J. Ilm. Wahana Pendidik., vol. 8, no. 5, pp. 84–88, 2022, doi: https://doi.org/10.5281/zenodo.6408864.

[14] C. C. Sumarga, D. E. Herwindiati, and J. Hendryli, “Rancangan Sistem Prediksi Harga Saham dengan Menggunakan Metode LSTM dan ARMA klasik,” J. Ilmu Komput. dan Sist. Inf., vol. 11, no. 1, 2023, doi: 10.24912/jiksi.v11i1.24075.

[15] A. Arfan and L. ETP, “Perbandingan Algoritma Long Short-Term Memory dengan SVR Pada Prediksi Harga Saham di Indonesia,” J. Pengkaj. dan Penerapan Tek. Inform., vol. 13, no. 1, pp. 33–43, 2020, doi: 10.33322/petir.v13i1.858.

[16] A. Widianti and I. Pratama, “Penanganan Missing Values Dan Prediksi Data Timbunan Sampah Berbasis Machine Learning,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 9, no. 2, pp. 242–251, 2024, doi: 10.36341/rabit.v9i2.4789.

[17] L. M. Ginting, M. M. Sigiro, E. D. Manurung, and J. J. P. Sinurat, “Perbandingan Metode Algoritma Support Vector Regression dan Multiple Linear Regression Untuk Memprediksi Stok Obat,” J. Appl. Technol. Informatics Indones., vol. 1, no. 2, pp. 29–34, 2021, doi: 10.54074/jati.v1i2.36.

[18] M. Hadi, A. M., Witanti, W., Melina, “Prediksi Pergerakan Harga Emas Menggunakan Metode Genetic Support Vector Regression,” J. Inform. Teknol. dan Sains, vol. 6, pp. 486–496, 2024, doi: 10.5281/zenodo.6408864.

[19] A. Hanifa, S. A. Fauzan, M. Hikal, and M. B. Ashfiya, “Perbandingan Metode LSTM dan GRU (RNN) untuk Klasifikasi Berita Palsu Berbahasa Indonesia,” Din. Rekayasa, vol. 17, no. 1, p. 33, 2021, doi: 10.20884/1.dr.2021.17.1.436.

[20] Khalis Sofi, Aswan Supriyadi Sunge, Sasmitoh Rahmad Riady, and Antika Zahrotul Kamalia, “Perbandingan Algoritma Linear Regression, Lstm, Dan Gru Dalam Memprediksi Harga Saham Dengan Model Time Series,” Seminastika, vol. 3, no. 1, pp. 39–46, 2021, doi: 10.47002/seminastika.v3i1.275.

[21] W. R. U. Fadilah, D. Agfiannisa, and Y. Azhar, “Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine,” Fountain Informatics J., vol. 5, no. 2, p. 45, 2020, doi: 10.21111/fij.v5i2.4449.

Downloads

Published

2025-08-04

How to Cite

[1]
Aviva Pradasyah and A. Baita, “Comparative Study of Support Vector Regression and Long Short-Term Memory for Stock Price Prediction”, JAIC, vol. 9, no. 4, pp. 1301–1311, Aug. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.