Application of ADASYN and Optuna in the XGBoost Algorithm for Stunting Detection
DOI:
https://doi.org/10.30871/jaic.v10i1.12035Keywords:
Stunting Detection, XGBoost, ADASYN, Optuna, Class ImbalanceAbstract
This study aims to develop an early detection model for childhood stunting risk using a machine learning approach based on Extreme Gradient Boosting (XGBoost), integrated with the Adaptive Synthetic Sampling (ADASYN) technique for data balancing and Optuna-based hyperparameter optimization. One of the main challenges in stunting prediction is class imbalance, where the number of stunting cases is significantly higher than non-stunting cases, thereby reducing the model’s ability to accurately identify the minority class. To address this issue, the study implements data deduplication, structured data splitting, and applies ADASYN exclusively to the training data to prevent data leakage and preserve the validity of the evaluation process. The proposed model (XGBoost with ADASYN and Optuna) is then compared with a baseline model that combines XGBoost and SMOTE. Experimental results show that the proposed model achieves an accuracy of 81.98%, a recall of 91.50%, and an F1-score of 89.14%, indicating improved sensitivity and a more balanced classification performance compared to the baseline. These findings demonstrate that the integration of ADASYN and Optuna-based hyperparameter optimization enhances model stability and generalization capability, making it a viable data-driven approach for stunting risk detection in environments with imbalanced class distributions.
Downloads
References
[1] As’an Hamid, M., & Subhiyakto, R. (2025). Performance Comparison of Random Forest, SVM, and XGBoost Algorithms with SMOTE for Stunting Prediction. In Journal of Applied Informatics and Computing (JAIC) (Vol. 9, Issue 4). http://jurnal.polibatam.ac.id/index.php/JAIC.
[2] Anju Fauziah, & Julan Hernadi. (2025). Klasifikasi Data Tak Seimbang Menggunakan Algoritma Random Forest dengan SMOTE dan SMOTE-ENN. Teknomatika: Jurnal Informatika Dan Komputer, 17(2), 38–47. https://doi.org/10.30989/teknomatika.v17i2.1530.
[3] Hendy, A., Ibrahim, R. K., Abdelaliem, S. M. F., Zaher, A., Alkubati, S. A., El-kader, R. G. A., & Hendy, A. (2025). Supervised machine learning for classification and prediction of stunting among under-five Egyptian children. BMC Pediatrics, 25(1). https://doi.org/10.1186/s12887-025-06138-x
[4] Azriani, D., Agustian, D., Zuhairini, Y., Yulita, I. N., & Dhamayanti, M. (2025). Prediction models for stunting at 2-years-old from Indonesian newborn population. BMC Pediatrics, 25(1). https://doi.org/10.1186/s12887-025-06096-4
[5] Syahfitri, N. I., Juledi, A. P., & Muti’ah, R. (2024). Comparative Analysis of Machine Learning Algorithm Performance in Predicting Stunting in Toddlers. Sinkron, 8(3), 1452–1462. https://doi.org/10.33395/sinkron.v8i3.13698
[6] Sugihartono, T., Wijaya, B., Marini, Alkayes, A. F., & Anugrah, H. A. (2025). Optimizing Stunting Detection through SMOTE and Machine Learning: a Comparative Study of XGBoost, Random Forest, SVM, and k-NN. Journal of Applied Data Sciences, 6(1), 667–682. https://doi.org/10.47738/jads.v6i1.494
[7] Syahrul, S., Nurhayati, S., Wicaksono, F., & Fatimah, T. N. (2025). Internet Of Things-Based Child Stunting Detection System For Supporting Sustainable Development Goals. In Journal of Engineering Science and Technology (Vol. 20, Issue 2).
[8] Putri, I. P., Terttiaavini, T., & Arminarahmah, N. (2024). Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 257–265. https://doi.org/10.57152/malcom.v4i1.1078
[9] Raihana, H. A., Gunawan, H., & Aquarini, N. (2025). Breaking Class Imbalance: Machine Learning Solutions for Stunting Detection. 16(2), 2088–1541. https://doi.org/10.24843/LKJTI.2025.v16.i2.p03
[10] Raihana, H. A., Gunawan, H., & Aquarini, N. (2025). Breaking Class Imbalance: Machine Learning Solutions for Stunting Detection. 16(2), 2088–1541. https://doi.org/10.24843/LKJTI.2025.v16.i2.p03
[11] Gurcan, F., & Soylu, A. (2024). Learning from Imbalanced Data: Integration of Advanced Resampling Techniques and Machine Learning Models for Enhanced Cancer Diagnosis and Prognosis. Cancers, 16(19). https://doi.org/10.3390/cancers16193417
[12] Gurcan, F., & Soylu, A. (2024). Learning from Imbalanced Data: Integration of Advanced Resampling Techniques and Machine Learning Models for Enhanced Cancer Diagnosis and Prognosis. Cancers, 16(19). https://doi.org/10.3390/cancers16193417
[13] Mishra, D., Tripathi, S. M., Chaurasia, A., & Chaurasia, P. K. (2025). A Review on Ensemble Learning Methods: Machine Learning Approach. International Journal of Research Publication and Reviews, 6(2), 3795–3803. https://doi.org/10.55248/gengpi.6.0225.0971
[14] Saepul Anwar, A., Irma Purnama Sari, A., Bahtiar, A., & Tohidi, E. (2024). Prediksi Stunting Menggunakan Algoritma Decision Tree Berbasis Synhetic Minority Over-Sampling Technique (SMOTE). Jurnal Dinamika Informatika, 13(2).
[15] Aini, Q., Rahardja, U., Sutedja, I., Spits Warnar, H. L. H., & Septiani, N. (2025). Utilization of Machine Learning for Stunting Prediction: Case Study and Implications for Pre-Matrical and Pre-Conceptive Midwifery Services. International Journal of Engineering, Science and Information Technology, 5(1), 584–590. https://doi.org/10.52088/ijesty.v5i1.1488
[16] Anggito Herlambang Hadisuwarno, M., Teguh Martono, K., Adriono, E., Soedarto, J., Tembalang, K., Semarang, K., Tengah, J., & Artikel, R. (2025). Komparasi performa model machine learning algoritma XGBoost dan Random Forest pada studi kasus mendeteksi stunting. AITI: Jurnal Teknologi Informasi, 22(2), 266–278.
[17] Azriani, D., Agustian, D., Zuhairini, Y., Yulita, I. N., & Dhamayanti, M. (2025). Prediction models for stunting at 2-years-old from Indonesian newborn population. BMC Pediatrics, 25(1). https://doi.org/10.1186/s12887-025-06096-4
[18] Fadil, I., Surya Manggala, R., Firmansyah, E., & Helmiawan, M. A. (2025). Performance Optimization of Support Vector Machine with SMOTE for Multiclass Stunting Prediction in Sumedang District, Indonesia. Jurnal Teknik Informatika (Jutif), 6(4), 2917–2928. https://doi.org/10.52436/1.jutif.2025.6.4.4843
[19] Hendy, A., Ibrahim, R. K., Abdelaliem, S. M. F., Zaher, A., Alkubati, S. A., El-kader, R. G. A., & Hendy, A. (2025). Supervised machine learning for classification and prediction of stunting among under-five Egyptian children. BMC Pediatrics, 25(1). https://doi.org/10.1186/s12887-025-06138-x
[20] Indrisari, E., Febiansyah, H., & Adiwinoto, B. (2025). A Systematic Literature Review on the Application of Machine Learning for Predicting Stunting Prevalence in Indonesia (2020–2024). Jurnal Sisfokom (Sistem Informasi Dan Komputer), 14(3), 277–283. https://doi.org/10.32736/sisfokom.v14i3.2366
[21] Rao, B., Rashid, M., Hasan, M. G., & Thunga, G. (2025). Machine Learning in Predicting Child Malnutrition: A Meta-Analysis of Demographic and Health Surveys Data. In International Journal of Environmental Research and Public Health (Vol. 22, Issue 3). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijerph22030449
[22] Suminar, R., Budiyana, D., Rohita, T., & Heryani, H. (2025). Replikasi Kalkulator Deteksi Stunting dalam Program Gerabah Stunting Manis melalui Kolaborasi Pentahelix oleh DP2KBP3A Kabupaten Ciamis. Kolaborasi: Jurnal Pengabdian Masyarakat, 5(3), 421–433. https://doi.org/10.56359/kolaborasi.v5i3.532
[23] Syahfitri, N. I., Juledi, A. P., & Muti’ah, R. (2024). Comparative Analysis of Machine Learning Algorithm Performance in Predicting Stunting in Toddlers. Sinkron, 8(3), 1452–1462. https://doi.org/10.33395/sinkron.v8i3.13698
[24] Warijan, W., Indrayana, T., Putro, D. P., & Gunawan Poltekkes Kemenkes Semarang Sekolah Tinggi Teknologi Ronggolawe, I. (2023). Machine Learning Model For Stunting Prediction. In Jurnal Health Sains (Vol. 04, Issue 09).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Fastabyq Putra Sadewa, Defri Kurniawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








