Application of Artificial Neural Network (MLP) for Multivariate Analysis of Stunting Causes in Indonesia
DOI:
https://doi.org/10.30871/jaic.v9i4.10205Keywords:
Food Security Index, Multi-Layer Perceptron (MLP), StuntingAbstract
Stunting is a major public health challenge in Indonesia, primarily caused by prolonged malnutrition and recurrent infections during the First 1,000 Days of Life. This study utilizes the Multi-Layer Perceptron (MLP) neural network model to predict stunting, offering a new dimension in the analysis of complex data and identification of patterns influencing stunting. With its capabilities, the MLP model provides higher precision in detecting contributing factors to stunting. The evaluation results of the model show RMSE of 0.7231, MAE of 3.0313, and an R² value of 0.9463. The Food Security Index (IKP), feature X9, had the highest feature importance, followed by X5 (Lack of Clean Water) and X1 (NCPR). This study presents a novel approach to predicting stunting percentages and offers more objective insights to support evidence-based and effective health policies aimed at reducing stunting prevalence in Indonesia.
Downloads
References
[1] M. Soffiudin, W. Putri, R. Amanda, D. Pratiwi, dan F. Makrufardi, “Community Based Stunting Prevention: Learning from Blue Collar Workers’ Children in Indonesia,” 2025.
[2] I. C. A. Soleha dan R. Riya, “Faktor – Faktor yang berhubungan dengan Kejadian Stunting pada Balita: Literature Review,” Jurnal Akademika Baiturrahim Jambi, vol. 13, no. 1, hlm. 158–167, Mar 2024, doi: 10.36565/jab.v13i1.821.
[3] B. Astria Paramashanti, H. Hadi, dan I. Made Alit Gunawan, “Pemberian ASI eksklusif tidak berhubungan dengan stunting pada anak usia 6-23 bulan di Indonesia Exclusive breastfeeding practice was not related with stunting in young children 6-23 months in Indonesia,” 2016.
[4] Ishartono dan Raharjo, “Sustainable Development Goals (SDGs) dan Pengentasan Kemiskinan,” 2016, [Daring]. Tersedia pada: http://www.bappenas.go.id/id/berita-dan-siaran-
[5] M. S. Haris, A. N. Khudori, dan W. T. Kusuma, “Perbandingan Metode Supervised Machine Learning Untuk Prediksi Prevalensi Stunting Di Provinsi Jawa Timur,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 2022, doi: 10.25126/jtiik.202296744.
[6] I. P. Putri, Terttiaavini, dan N. Arminarahmah, “Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, hlm. 257–265, Jan 2024, doi: 10.57152/malcom.v4i1.1078.
[7] A. Y. Perdana, R. Latuconsina, dan A. Dinimaharawati, “Prediksi Stunting pada Balita dengan Algoritma Random Forest,” 2021.
[8] D. Sinaga, “Jaringan Saraf Tiruan Infeksi Mata Dengan Menggunakan Metode Beraksitektur Multi Layer Perceptron,” 2020.
[9] T. Bikku, “Multi-layered deep learning perceptron approach for health risk prediction,” J Big Data, vol. 7, no. 1, Des 2020, doi: 10.1186/s40537-020-00316-7.
[10] H. Fang, M. A. Haile, dan Y. Wang, “Robust Extended Kalman Filtering for Systems with Measurement Outliers,” Mar 2019, [Daring]. Tersedia pada: http://arxiv.org/abs/1904.00335
[11] S. Dhummad, “The Imperative of Exploratory Data Analysis in Machine Learning,” Scholars Journal of Engineering and Technology, vol. 13, no. 01, hlm. 30–44, Jan 2025, doi: 10.36347/sjet.2025.v13i01.005.
[12] A. Gnanavelu, C. Venkataramu, dan R. Chintakunta, “Cardiovascular Disease Prediction Using Machine Learning Metrics,” Journal of Young Pharmacists, vol. 17, no. 1, hlm. 226–233, Jan 2025, doi: 10.5530/jyp.20251231.
[13] Z. Noroozi, A. Orooji, dan L. Erfannia, “Analyzing the impact of feature selection methods on machine learning algorithms for heart disease prediction,” Sci Rep, vol. 13, no. 1, Des 2023, doi: 10.1038/s41598-023-49962-w.
[14] M. K. Uçar, M. Nour, H. Sindi, dan K. Polat, “The Effect of Training and Testing Process on Machine Learning in Biomedical Datasets,” Math Probl Eng, vol. 2020, 2020, doi: 10.1155/2020/2836236.
[15] P. Lingga, “Implementasi Diagnosa Penyakit Panleukopenia Pada Kucing Dengan Menggunakan Jaringan Saraf Tiruan Multi Layer Perceptron (Studi Kasus:Clinic Sasmita Pet Shop),” 2020.
[16] M. Yanto, F. Hadi, dan S. Arlis, “Optimization of Machine Learning Classification Analysis of Malnutrition Cases in Children,” Jurnal RESTI, vol. 7, no. 6, hlm. 1378–1386, Des 2023, doi: 10.29207/resti.v7i6.5278.
[17] Najwa Zahira Shofa dkk., “Food Security on The Incidence of Stunting in Agricultural Areas,” Nursing and Health Sciences Journal (NHSJ), vol. 4, no. 4, hlm. 451–458, Des 2024, doi: 10.53713/nhsj.v4i4.432.
[18] S. N. Munthe, R. M. Silalahi, K. C. Pertiwi, V. Y. Permanasari, dan H. Andriani, “Kajian Literatur: Pengaruh Konsumsi Air Bersih Terhadap Stunting Pada Anak yang Berasal dari Keluarga Berpendapatan Rendah,” MAHESA : Malahayati Health Student Journal, vol. 4, no. 2, hlm. 566–580, Feb 2024, doi: 10.33024/mahesa.v4i2.13301.
[19] N. M. Sahara, D. Arianto, dan M. Santoso, “Dampak Program Bantuan Sosial sebagai Intervensi Gizi Sensitif terhadap Status Stunting pada Balita,” Jurnal Ekonomi Kesehatan Indonesia, vol. 9, no. 1, Jun 2024, doi: 10.7454/eki.v9i1.1034.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Diva Irnanda, Ananta Surya Pratama, Fawwaz Azhima Putra, Sugiyanto Sugiyanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








