Deployment of Kidney Tumor Disease Object Detection Using CT-Scan with YOLOv5
Abstract
Image processing plays a crucial role in identifying kidney tumors through CT-Scan images. Object detection technology, particularly YOLO, stands out for its speed and accuracy in facilitating more detailed analysis. Using Flask as a web framework offers optimal responsiveness, providing adaptive ease of use, especially in medical image processing. Evaluation of the model shows impressive results, with a mean Average Precision (mAP) of 0.987 for the 'kidney tumor' label. Detection on public data demonstrated high performance with accuracy, precision, recall, and F1-Score of 98.56%, 98.66%, 99.66%, and 99.16%, respectively. This study also utilized clinical data comprising 62 CT-Scan images. Evaluation of the clinical data revealed that YOLOv5 produced an accurate detection model with accuracy, precision, recall, and F1-Score of 95.16%, 96.72%, 98.33%, and 97.52%, respectively. The research shows that both public and clinical data models can accurately detect kidney tumors based on CT-Scan images. The deployment process using the Flask web-based platform allows direct interaction with users through an intuitive interface, enabling users to upload their CT-Scan images and quickly obtain detection results. These test results provide evidence that object detection using YOLOv5 achieves high accuracy in detecting both public and clinical datasets.
Downloads
References
Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, “Deteksi Dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo,” 2021.
M. Ramanda Hasibuan, “Pemilihan Fitur dengan Information Gain untuk Klasifikasi Penyakit Gagal Ginjal menggunakan Metode Modified K-Nearest Neighbor (MKNN),” 2019. [Online]. Available: http://j-ptiik.ub.ac.id
R. Tri Rahayu, N. Sulaksono, A. Nino Kurniawan, P. Kemenkes Semarang, and I. Corresponding Author, “Studi Kasus Pemeriksaan MSCT Urografi Multiphase dengan Klinis Tumor Ginjal,” Jurnal Imejing Diagnostik (JImeD), vol. 9, pp. 75–79, 2023, [Online]. Available: http://ejournal.poltekkes-smg.ac.id/ojs/index.php/jimed/index
F. Aulia et al., “Implementasi Algoritma Convolutional Neural Network Untuk Mendeteksi Penyakit Ginjal Implementation Of Convolutional Neural Network For Detecting Kidney Disease,” Medan, 2022. [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/
L. Trisnawati, L. Hakim, and M. Kom, “Segmentasi Citra Ct Scan Lung Menggunakan Deteksi Tepi Sobel Dan Metode Distance Regularized Level Set Evolution (DRLSE),” Online, 2018. [Online]. Available: http://jurnal.yudharta.ac.id/v2/index.php/EXPLORE-IT/
O. D. Nurhayati, “Metode Segmentasi Untuk Analisis Citra Digital Head Ct-Scan,” 2017.
D. Saputra and Sumijan, “Deteksi Tepi untuk Mengidentifikasi Kanker Ginjal Menggunakan Metode Sobel, Roberts dan Canny,” J Teknol, pp. 48–54, Dec. 2022, doi: 10.35134/jitekin.v12i2.69.
X. Liu, L. Song, S. Liu, and Y. Zhang, “A review of deep-learning-based medical image segmentation methods,” Sustainability (Switzerland), vol. 13, no. 3, pp. 1–29, Feb. 2021, doi: 10.3390/su13031224.
Q. Yu, Y. Shi, J. Sun, Y. Gao, J. Zhu, and Y. Dai, “Crossbar-Net: A Novel Convolutional Neural Network for Kidney Tumor Segmentation in CT Images,” IEEE Transactions on Image Processing, vol. 28, no. 8, pp. 4060–4074, Aug. 2019, doi: 10.1109/TIP.2019.2905537.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” 2016. [Online]. Available: http://pjreddie.com/YOLO/
H. Feng, X. Kou, Z. Tang, and L. Li, “FYU-Net: A Cascading Segmentation Network for Kidney Tumor Medical Imaging,” Comput Math Methods Med, vol. 2022, 2022, doi: 10.1155/2022/4792532.
M. Anwar, Y. Kristian, and E. Setyati, “Classification Of Chili Plant Diseases Equipped With Leaf And Fruit Image Segmentation Using Yolo V7,” Journal of Information Technology and Computer Science (INTECOMS), vol. 6, no. 1, 2023.
Z. H. Batubara, Y. Hamonangan, M. Arfan, and A. Hidayatno, “Perancangan Sistem Deteksi Pelanggaran Penggunaan Helm Dengan Metode Deep Learning Menggunakan YoloV5 Ultralytic,” Transient: Jurnal Ilmiah Teknik Elektro, vol. 13, no. 1, pp. 11–20, Mar. 2024, doi: 10.14710/transient.v13i1.11-20.
N. Benarkah, M. F. Naufal, and B. Renatasiva, “YOLOV5 untuk Menghitung Sel Darah Merah dan Sel Darah Putih,” Keluwih: Jurnal Sains dan Teknologi, vol. 5, no. 1, pp. 10–18, Apr. 2024, doi: 10.24123/saintek.v5i1.6291.
“20018-Article Text-40240-1-10-20230508”.
X. Liu, L. Song, S. Liu, and Y. Zhang, “A review of deep-learning-based medical image segmentation methods,” Sustainability (Switzerland), vol. 13, no. 3, pp. 1–29, Feb. 2021, doi: 10.3390/su13031224.
R. Wang, T. Lei, R. Cui, B. Zhang, H. Meng, and A. K. Nandi, “Medical image segmentation using Deep learning: A survey,” IET Image Process, vol. 16, no. 5, pp. 1243–1267, Apr. 2022, doi: 10.1049/ipr2.12419.
J. Chen and X. Ran, “Deep learning with Edge Computing: A Review,” Proceedings of the IEEE, vol. 107, no. 8. Institute of Electrical and Electronics Engineers Inc., pp. 1655–1674, Aug. 01, 2019. doi: 10.1109/JPROC.2019.2921977.
D. Nafis Alfarizi, R. Agung Pangestu, D. Aditya, M. Adi Setiawan, and P. Rosyani, “Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis,” 2023. [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk
M. Hatami, T. Tukino, F. Nurapriani, W. Widiyawati, and W. Andriani, “Deteksi Helmet Dan Vest Keselamatan Secara Realtime Menggunakan Metode Yolo Berbasis Web Flask ,” EDUSAINTEK: Jurnal Pendidikan, Sains dan Teknologi, vol. 10, no. 1, pp. 221–233, Jan. 2023, doi: 10.47668/edusaintek.v10i1.651.
H. Shrivastava, “Symptomatic Assistance,” Int J Res Appl Sci Eng Technol, vol. 9, no. VII, pp. 3658–3660, Jul. 2021, doi: 10.22214/ijraset.2021.37132.
J. Rathod and K. Trivedi, “Custom Object Detection, Tracking And Web Api With Yolo And Flask Using Darknet Neural Network Framework,” International Research Journal of Engineering and Technology, 2021, [Online]. Available: www.irjet.net
S. Gunawan Zain and A. Ardilla, “Detection Of Vehicle Type And License Plate With Convolutional Neural Network Model Yolov7,” Jurnal Teknik Informatika (JUTIF)5.2.XX, vol. 5, no. 2, pp. 621–636, 2024, doi: 10.52436/1.jutif.2024.5.2.XX.
S. Mody, H. Mehta, P. Mantri, B. Ali, and A. Khivasara, “Safety Gear Equipment Detection for Warehouse and Construction Sites Using YOLOv5,” International Research Journal of Engineering and Technology, 2021, [Online]. Available: www.irjet.net
“Waste Object Detection Using Yolov5,” International Journal of Progressive Research in Engineering Management and Science, Apr. 2024, doi: 10.58257/ijprems33165.
T. Freund, Y. Hamdaoui, and A. Spiwack, “Union and intersection contracts are hard, actually,” Jun. 2021, doi: 10.1145/3486602.3486767.
Copyright (c) 2024 Hastyantoko Dwiki Kahingide, Abu Salam
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).