Balancing Student Specialization Class Placement Based on Interests and Talents Using K-Means Clustering and Genetic Algorithm
DOI:
https://doi.org/10.30871/jaic.v9i6.10425Keywords:
Genetic Algorithm, K-Means Clustering, RIASEC, School Optimization, Student PlacementAbstract
Student specialization placement in Indonesian secondary schools often produces imbalanced class distributions and misalignment between student interests and assigned tracks. This study develops a hybrid optimization system combining K-Means clustering and Genetic Algorithm (GA) to allocate 133 tenth-grade students from SMAN 1 Ngimbang into four specialization classes (Science, Mixed-Science, Mixed-Social, Social) while balancing operational constraints. Initial K-Means clustering (k=4, n_init=100) achieved a Silhouette Score of 0.287 but yielded severely imbalanced distribution (10, 51, 48, 24 students). GA optimization (population=300, generations=150, crossover=70%, mutation=10%, elitism=10%) with multi-component fitness function incorporating cosine similarity, distribution penalty, movement penalty, and entropy produced balanced classes (31, 35, 35, 32 students) within the 30-35 target range. Post-optimization metrics showed 73.7% retention rate, average match score of 0.792, entropy of 0.482, and execution time of 47.8 seconds. The Silhouette Score decreased to 0.080, reflecting an acceptable trade-off between cluster purity and operational feasibility. Sensitivity analysis confirmed weight configuration robustness. This system demonstrates practical applicability for real-time school implementation, reducing distribution gap by 90.2% while maintaining individual-class compatibility.
Downloads
References
[1] C. R. Sari, “Teknik Data Mining Menggunakan Classification Dalam Sistem Penunjang Keputusan Peminatan SMA Negeri 1 Polewali,” IJNS – Indones. J. Netw. Secur., vol. 5, no. 1, pp. 48–54, 2016, [Online]. Available: http://ijns.org/journal/index.php/ijns/article/view/1398
[2] M. Ayucedar, S. Suyoto, and E. Rusdianto, “Sistem Pendukung Keputusan Pemilihan Minat Bakat untuk Rekomendasi Karir dengan Metode Analytical Network Processing,” J. Inform. Atma Jogja, vol. 1, pp. 50–59, 2020, [Online]. Available: https://ojs.uajy.ac.id/index.php/jiaj/article/viewFile/3831/2181
[3] OECD, “PISA PISA 2022 Results Malaysia,” p. 10, 2022, [Online]. Available: https://www.oecd.org/publication/pisa-2022-results/country-notes/malaysia-1dbe2061/
[4] M. Muwakhidah, E. F. Mufidah, M. Mudhar, and M. Moesarofah, “Pemberian Layanan Tes Bakat dan Minat Karier Berdasarkan Teori Holland,” ABDI MOESTOPO J. Pengabdi. Pada Masy., vol. 6, no. 2, pp. 179–184, 2023, doi: 10.32509/abdimoestopo.v6i2.2734.
[5] L. Hidayat, W. F. Mahmudy, and P. Factor, “Pengelompokan Data Hasil Tes Kepribadian 16Pf Sopir Bus,” J. Teknol. Inf. dan Ilmu Komput. (JTIIK)., vol. 3, no. 3, pp. 163–168, 2016.
[6] A. Amrulloh and E. I. Sela, “Course scheduling optimization using genetic algorithm and tabu search,” J. Teknol. dan Sist. Komput., vol. 9, no. 3, pp. 157–166, 2021, doi: 10.14710/jtsiskom.2021.14137.
[7] D. Setiawan, R. N. Putri, and R. Suryanita, “Implementasi Algoritma Genetika Untuk Prediksi Penyakit Autoimun,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 4, no. 1, pp. 8–16, 2019, doi: 10.36341/rabit.v4i1.595.
[8] Mg. Rohman, K. Yahya, and P. H. Susilo, “Implementasi Algoritma K-means Clustering pada Pengelompokan Data Kepuasan Penggunaan E-learning,” Gener. J., vol. 8, no. 2, pp. 81–92, 2024, doi: 10.29407/gj.v8i2.22730.
[9] M. B. A.- Zoubi and M. al Rawi, “An efficient approach for computing silhouette coefficients,” J. Comput. Sci., vol. 4, no. 3, p. 252, 2008.
[10] R. Hidayati, A. Zubair, A. Hidayat Pratama, and L. Indana, “Silhouette Coefficient Analysis in 6 Measuring Distances of K-Means Clustering,” Techno.Com, vol. 20, no. 2, pp. 186–197, 2021.
[11] D. W. Utomo and D. Kurniawan, “Formasi kelompok dinamis untuk mendukung kolaborasi pembelajaran proyek perangkat lunak,” J. Inov. Teknol. Pendidik., vol. 7, no. 1, pp. 42–51, 2020, doi: 10.21831/jitp.v7i1.31378.
[12] Aditia Yudhistira and Rio Andika, “Pengelompokan Data Nilai Siswa Madrasah Ta’Hiliyah Menggunakan Metode K-Means Clustering,” J. Ris. Sist. Inf., vol. 1, no. 1, pp. 53–59, 2023, doi: 10.69714/0v1pkz05.
[13] M. A. Oktaviansyah, “Data Hasil Pengumpulan Quisioner,” Kaggle.
[14] N. Valle, P. Antonenko, K. Dawson, and A. C. Huggins-Manley, “Staying on target: A systematic literature review on learner-facing learning analytics dashboards,” Br. J. Educ. Technol., vol. 52, no. 4, pp. 1724–1748, Jul. 2021, doi: https://doi.org/10.1111/bjet.13089.
[15] J. Ohliati and B. S. Abbas, “Measuring students satisfaction in using learning management system,” Int. J. Emerg. Technol. Learn., vol. 14, no. 4, pp. 180–189, 2019, doi: 10.3991/ijet.v14i04.9427.
[16] R. L. C. Silva Filho and P. J. L. Adeodato, “Data mining solution for assessing the secondary school students of brazilian federal institutes,” Proc. - 2019 Brazilian Conf. Intell. Syst. BRACIS 2019, no. May, pp. 574–579, 2019, doi: 10.1109/BRACIS.2019.00106.
[17] A. Montazami, H. Ann Pearson, A. Kenneth Dubé, G. Kacmaz, R. Wen, and S. Shajeen Alam, “Why this app? How educators choose a good educational app,” Comput. Educ., vol. 184, p. 104513, 2022, doi: https://doi.org/10.1016/j.compedu.2022.104513.
[18] Z. Chen, J. Li, H. Liu, X. Wang, H. Wang, and Q. Zheng, “Learning multi-scale features for speech emotion recognition with connection attention mechanism,” Expert Syst. Appl., vol. 214, p. 118943, 2023, doi: https://doi.org/10.1016/j.eswa.2022.118943.
[19] D. M. Goldenholz, H. Sun, W. Ganglberger, and M. B. Westover, “Sample Size Analysis for Machine Learning Clinical Validation Studies,” Biomedicines, vol. 11, no. 3, pp. 1–9, 2023, doi: 10.3390/biomedicines11030685.
[20] F. M. Siregar, U. Juhardi, M. Muntahanah, and A. K. Hidayah, “Comparative Analysis Of K Means And K Medoids Algorithms In Determining Social Assistance In Padang Sidimpuan City, North Sumatra,” J. Komputer, Inf. dan Teknol., vol. 4, no. 1, pp. 1–7, 2024, doi: 10.53697/jkomitek.v4i1.1795.
[21] M. A. K. Raiaan et al., “A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks,” Decis. Anal. J., vol. 11, no. March, p. 100470, 2024, doi: 10.1016/j.dajour.2024.100470.
[22] M. A. Oktaviansyah, “Data Hasil Akhir Optimalisasi,” Kaggle.
[23] K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction,” Water Resour. Manag., vol. 20, no. 6, pp. 861–878, 2011.
[24] S. Wenren, W. Ding, Z. Wang, Y. Xia, R. Xie, and W. Li, “Reciprocal effects between reading comprehension and emotional cognitive ability,” Learn. Individ. Differ., vol. 109, p. 102398, 2024, doi: https://doi.org/10.1016/j.lindif.2023.102398.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Chaidir Chalaf Islamy, Muhammad Andika Oktaviansyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








