Machine Learning-Based Sentiment Analysis on Twitter (X): A Case Study of the “Kabur Aja Dulu” Issue Using SVM

Authors

  • Lina Rohmatun Universitas Amikom Yogyakarta
  • Anna Baita Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i4.9991

Keywords:

Sentiment Analysis, Twitter (X), Support Vector Machine (SVM), Machine Learning, Kabur Aja Dulu

Abstract

This study aims to analyze public sentiment toward the phenomenon of “Kabur Aja Dulu” on Twitter (X) using the Support Vector Machine (SVM) method. The data used consists of 4,768 Indonesian-language tweets collected through web scraping. The pre-processing process includes data cleaning, tokenization, stemming, and translation into English for automatic sentiment labeling using TextBlob. The data is then classified into three sentiment categories: positive, negative, and neutral. To address class imbalance, the SMOTE method is applied to the training data, along with TF-IDF techniques for feature extraction. The model was evaluated using the K-Fold Cross Validation method and Grid Search for hyperparameter tuning. The results of the study show that the SVM model with a linear kernel and parameter C=10 provides the best performance with an accuracy value of 85.56%, precision of 845.19%, recall of 85.56%, and F1-score of 85.30%. The main finding of this study is that the linear SVM method is capable of classifying sentiment well, particularly for neutral sentiment data, and has proven effective as an approach to sentiment analysis in the context of social media using the Indonesian language.

Downloads

Download data is not yet available.

References

[1] Putri Sari Margaret Julianty Silaban, Diya Mirza, Nida Nafilah, and Surya Zulfachrinal Tanjung, “Menghadapi Ancaman Nasionalisme Disintegrasi Bangsa di Tengah Trend Kabur Aja Dulu,” Jurnal Bintang Pendidikan Indonesia, vol. 3, no. 2, pp. 193–199, Mar. 2025, doi: 10.55606/jubpi.v3i2.3821.

[2] N. Abelia et al., “Dampak Framing Tagar #Kaburajadulu Terhadap Opini Publik dan Kebijakan Sosial di Indonesia,” Filosofi Publikasi Ilmu Komunikasi, Desain, Seni Budaya, vol. 2, pp. 71–77, May 2025, doi: 10.62383/filosofi.v2i2.577.

[3] Meylia Arifah Salsa et al., “Eksplorasi Dinamika Sosial Melalui Analisis Sentimen Tagar #KaburAjaDulu di Media Sosial Tiktok,” SABER : Jurnal Teknik Informatika, Sains dan Ilmu Komunikasi, vol. 3, no. 2, pp. 238–251, May 2025, doi: 10.59841/saber.v3i2.2631.

[4] D. Irenniza, A. Putri, F. T. Saputra, and R. Hardiyanti, “Pengaruh Penggunaan Media Sosial Twitter Terhadap Pemenuhan Kebutuhan Informasi (Survei Terhadap Pengikut Akun @Habisnontonfilm),” Jurnal Ilmiah Wahana Pendidikan, vol. 10, no. 8, pp. 410–418, 2024, doi: 10.5281/zenodo.11107309.

[5] M. Aziz Assuja, “Analisis Sentimen Tweet Mengunakan Backpropagation Neutral Network,” Jurnal TEKNOINFO, vol. 10, no. 2, pp. 1693–1703, 2016.

[6] R. Puspita and T. N. Suciati, “Mobile Phone dan Media Sosial: Pnggunaan dan Tantangannya pada Jurnalisme Online Indonesia,” Jurnal Ilmu Komunikasi, vol. 3, no. 2, pp. 2656–050, 2020, [Online]. Available: http://ejournal.upnvj.ac.id/index.php/JEP/index

[7] S. A. Mahira, I. Sukoco, C. S. Barkah, N. Jamil, A. Novel, and J. A. Bisnis, “Teknologi Artificial Intelegence Dalam Analisis Sentimen: Studi Literatur Pada Perusahaan Kata.ai,” Bulan Agustus Tahun, vol. 6, no. 2, pp. 139–148, Aug. 2023.

[8] Irma Surya Kumala Idris, Yasin Aril Mustofa, and Irvan Abraham Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM)boards,” Jambura Journal of Electrical and Electronics Engineering, vol. 5, no. 1, pp. 823–848, Jan. 2023, Accessed: Apr. 29, 2025. [Online]. Available: https://ejurnal.ung.ac.id/index.php/jjeee/article/view/16830/5678

[9] A. Mudya Yolanda and R. Tri Mulya, “Implementasi Metode Support Vector Machine untuk Analisis Sentimen pada Ulasan Aplikasi Sayurbox di Google Play Store,” VARIANSI: Journal of Statistics and Its Application on Teaching and Research, vol. 6, no. 2, pp. 76–83, 2024, doi: 10.35580/variansiunm258.

[10] R. Damasela, B. P. Tomasouw, and Z. A. Leleury, “Penerapan Metode Support Machine Learning (SVM) Untuk Mendeteksi Penyalahgunaan Narkoba,” PARAMETER: Jurnal Matematika, Statistika dan Terapannya, vol. 1, no. 2, pp. 111–122, Oct. 2022, doi: 10.30598/parameterv1i2pp111-122.

[11] Hidayatunnisa, Kusrini, and Kusnawi, “Perbandingan Kinerja Metode Naive Bayes dan Support Vector Machine dalam Analisis Soal,” Agustus, vol. 13, no. 2, pp. 173–180.

[12] D. Haliza and M. Ikhsan, “Sentiment Analysis on Public Perception of the Nusantara Capital on Social Media X Using Support Vector Machine (SVM) and K-Nearest Neighbor (K-NN) Methods,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[13] I. Kurniawan et al., “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 1, 2023, [Online]. Available: http://jurnal.mdp.ac.id

[14] N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” vol. 6, no. 3, 2021, [Online]. Available: http://situs.com

[15] N. Muchammad Shiddieqy Hadna, P. Insap Santosa, and W. Wahyu Winarno, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisi Sentimen Di Twitter,” Mar. 2016.

[16] M. I. Fikri, T. S. Sabrila, Y. Azhar, and U. M. Malang, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” vol. 10, p. 2, Dec. 2020.

[17] F. Abdusyukur, “Penerapan Algoritma Support Vector Machine (SVM) Untuk Klasifikasi Pencemaran Nama Baik di Media Sosial Twitter,” KOMPUTA: Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 1, 2023.

[18] A. Amelia, L. N. Hayati, and H. Darwis, “Analisis Sentimen Masyarakat Terhadap Sistem Pembayaran Mypertamina dengan Metode Random Forest, SVM, dan Naïve Bayes,” Literatur Informatika & Komputer, vol. 1, no. 1, pp. 28–44, 2024, doi: 10.33096/linier.v1i1.2269.

[19] N. A. Lestari et al., “Metode Naive Bayes Classifier Dengan Textblob Untun Analisis Sentimen Terhadap Pelayanan Indihome dan First Media,” Seminar Nasional Teknologi Informasi dan Komunikasi STI&K (SeNTIK), vol. 4, no. 1, Sep. 2020, [Online]. Available: https://t.co/Ws2wOyU5kz

[20] R. Parlika, S. Ilham Pradika, A. M. Hakim, and R. N. M. Kholilul, “Analisis Sentimen Twitter Terhadap Bitcoin dan Cryptocurrency Berbasis Python TextBlob,” 2020. [Online]. Available: https://t.co/QaUW3P2TKc

[21] A. Erlangga, Y. P. Astuti, E. Kartikadarma, S. Rakasiwi, and E. R. Subhiyakto, “Penggunaan Algoritma Naïve Bayes dengan Polarity Textblob untuk Analisis Sentimen pada Acara ASEAN CUP 2024 U-16 di Media Sosial Twitter,” Jurnal Sains dan Teknologi Informasi, vol. 3, no. 1, pp. 177–189, 2025, doi: 10.62951/switch.v3i1.357.

[22] A. Fariz Zulhilmi, R. Setya Perdana, U. Brawijaya, and P. Korespondensi, “Pengenalan Entitas Bernama Menggunakan BI-LSTM Pada Chatbot Bahasa Indonesia Named Entity Recognition Using BI-LSTM in Indonesian Language Chatbot,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 11, no. 5, 2024, doi: 10.25126/jtiik.2024117968.

[23] G. R. Putri, M. A. Maulana, and S. Bahri, “Perbandingan Algoritma Naïve Bayes dan TextBlob Untuk Mendapatkan Analisis Sentimen Masyarakat Pada Sosial Media,” Teknika, vol. 13, no. 2, pp. 213–218, Jun. 2024, doi: 10.34148/teknika.v13i2.815.

[24] M. H. Al-Areef and K. Saputra, “Analisis Sentimen Pengguna Twitter Mengenai Calon Presiden Indonesia Tahun 2024 Menggunakan Algoritma LSTM,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. 22, pp. 270–279, Aug. 2023, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jis/index

[25] P. Agusia, M. Uli, A. Manurung, V. Calista, and V. C. Mawardi, “Pemanfaatan Word Cloud Pada Analisis Sentimen Dalam Menggali Persepsi Publik,” Seminar Nasional Corisindo, Jun. 2024.

[26] Z. Alhaq, A. Mustopa, and J. D. Santoso, “Penerapan Metode Support Machine Learning Untuk Analisis Sentimen PenggunaTwitter,” Jurnal Of Information System Management, vol. 3, no. 3, 2021.

[27] T. Ridwansyah, “KLIK: Kajian Ilmiah Informatika dan Komputer Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” Media Online, vol. 2, no. 5, pp. 178–185, 2022, [Online]. Available: https://djournals.com/klik

[28] M. Rafly Gusmansyah and H. Hendrawan, “Peningkatan Kinerja Analisis Sentimen pada Ulasan Aplikasi Identitas Kependudukan Digital (IKD) di Indonesia Menggunakan Algoritma Support Vector Machine (SVM) dan SMOTE under a Creative Commons Attribution-NonCommercial ShareAlike 4.0 International (CC BY-NC-SA 4.0),” vol. 10, no. 1, pp. 2541–1179, 2025, [Online]. Available: https://journal.uin-alauddin.ac.id/index.php/instek

[29] N. Fajriyah, N. T. Lapatta, D. W. Nugraha, and R. Laila, “Implementasi SVM dan SMOTE Pada Analisis Sentimen Pada Media Sosial X Terhadap Pelantikan Agus Harimurti Yudhoyono,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 10, no. 2, pp. 1359–1370, Mar. 2025, doi: 10.29100/jipi.v10i2.6246.

[30] J. T. Kumalasari and I. Puspitorini, “Perbandingan Metode Klasifikasi dan SMOTE Terhadap Analisa Sentimen Mobil Listrik Indonesia,” Jurnal Minfo Polgan, vol. 13, no. 2, pp. 2257–2268, Jan. 2025, doi: 10.33395/jmp.v13i2.14428.

[31] A. Pradhan and W. : Www, “Support vector machine-A survey International Journal of Emerging Technology and Advanced Engineering Support Vector Machine-A Survey,” International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 8, Jul. 2012, [Online]. Available: www.ijetae.com

[32] W. Nugraha and A. Sasongko, “Hyperparameter Tuning pada Algoritma Klasifikasi dengan Grid Search Hyperparameter Tuning on Classification Algorithm with Grid Search,” Sistemasi: Jurnal Sistem Informasi, vol. 11, no. 2, pp. 2540–9719, May 2022, [Online]. Available: http://sistemasi.ftik.unisi.ac.id

[33] Anugerah Simanjuntak et al., “Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 13, no. 1, pp. 60–67, Feb. 2024, doi: 10.22146/jnteti.v13i1.8532.

Downloads

Published

2025-08-22

How to Cite

[1]
L. Rohmatun and A. Baita, “Machine Learning-Based Sentiment Analysis on Twitter (X): A Case Study of the ‘Kabur Aja Dulu’ Issue Using SVM”, JAIC, vol. 9, no. 4, pp. 1972–1983, Aug. 2025.

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.