Implementation of the K-Nearest Neighbors (KNN) Regressor Method to Predict Toyota Used Car Prices
Abstract
The development of the automotive industry in Indonesia has experienced significant growth in recent decades, especially in the used car market segment. One of the used car brands that has high demand is Toyota, because it has a reliable reputation and quality. However, there are challenges that are often faced by sellers and buyers of used cars, namely in determining prices correctly and accurately. Incorrect pricing can be detrimental to one party, either the price is too high or too low. Prices that are too high can slow down the turnover of goods in the market. While low prices can cause sellers to experience losses. The purpose of this study is to help find good performance in determining the price of used Toyota cars. This study will use one of the Machine Learning methods, namely K-Nearest Neighbors Regressor. The KNN method is one method that can be used for classification and regression. In addition, this algorithm is a simple algorithm and can provide accurate prediction results based on its proximity to existing data. This study uses selected relevant features, namely model, year, kilometer, tax, mpg, and cc. The results of this study obtained MAE = 3.31686, MSE = 26.43640, RMSE = 5.14163, and R2-Score = 0.99501 using 90:10 data division and k = 1. This proves that KNN Regressor is an effective method in predicting the price of used Toyota cars. Therefore, the K-Nearest Neighbors (KNN) Regressor method is able to provide a fairly accurate price estimate with a minimal error rate.
Downloads
References
P. A. Widyasmoro and S. Suryoko, “Pengaruh Harga, Kualitas Produk dan Promosi Terhadap Keputusan Pembelian Mobil Merek Toyota Sienta di PT. Nasmoco Gombel Semarang,” J. Ilmu Adm. Bisnis, vol. 9, no. 4, pp. 431–438, 2020, doi: 10.14710/jiab.2020.28713.
Infootomotif, “Info Otomotif: Manfaat Mobil untuk Manusia.” [Online]. Available: https://kumparan.com/info-otomotif/manfaat-mobil-untuk-aktivitas-manusia-1wqysMbGRz0/1
P. N. M. Yoedo, “Pasar Mobil Domestik,” 2023, [Online]. Available: https://otomotif.bisnis.com/read/20231210/275/1722540/pasar-mobil-domestik-lesu-begini-proyeksi-penjualan-toyota-hingga-akhir-2023
A. Hadian, “Pengaruh Harga Produk Dan Mencari Variasi Terhadap Terhadap Perpindahan Merek Mobil Mpv Di Kota Medan,” J. Penelit. Pendidik. Sos. Hum., vol. 3, no. 1, pp. 346–354, 2018, doi: 10.32696/jp2sh.v3i1.98.
A. I. Lestari, Verawaty, Setya Ega Susanto, Baharuddin, and Budhi Krisnanto, “Analisis Faktor Kebudayaan, Sosial, Pribadi Dan Psikologi Terhadap Keputusan Konsumen Membeli Mobil Bekas Pada Dealer Di Kota Makassar,” J. Sains Manaj. Nitro, vol. 1, no. 2, pp. 182–192, 2022, doi: 10.56858/jsmn.v1i2.98.
Merdeka.com/OTO, “Menentukan Harga Jual Mobil Bekas agar Tidak Mengalami Kerugian,” p. 222330, [Online]. Available: https://www.merdeka.com/otomotif/begini-caranya-menentukan-harga-jual-mobil-bekas-agar-tidak-mengalami-kerugian-222330-mvk.html
M. D. H. Kusuma and S. Hidayat, “Penerapan Model Regresi Linier dalam Prediksi Harga Mobil Bekas di India dan Visualisasi dengan Menggunakan Power BI,” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 2, pp. 1097–1110, 2024, doi: 10.35870/jimik.v5i2.629.
Z. Sun, “Research on factors affecting second-hand car market prices,” Theor. Nat. Sci., vol. 36, no. 1, pp. 128–135, 2024, doi: 10.54254/2753-8818/36/20240532.
E. S. Eriana and D. A. Zein, “Artificial Intelligence,” Angew. Chemie Int. Ed., vol. 6(11), p. 1, 2023.
E. Hasibuan et al., “Implementasi Machine Learning untuk Prediksi Harga Mobil Bekas dengan Algoritma Regresi Linear berbasis Web,” J. Ilm. Komputasi, vol. 21, no. 4, pp. 595–602, 2022, doi: 10.32409/jikstik.21.4.3327.
A. Amalia, M. Radhi, S. H. Sinurat, D. R. H. Sitompul, and E. Indra, “Prediksi Harga Mobil Menggunakan Algoritma Regressi Dengan Hyper-Parameter Tuning,” J. Sist. Inf. dan Ilmu Komput. Prima (JUSIKOM PRIMA), vol. 4, no. 2, pp. 28–32, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v4i2.2479.
P. H. Putra, A. Azanuddin, B. Purba, and Y. A. Dalimunthe, “Random forest and decision tree algorithms for car price prediction,” J. Mat. Dan Ilmu Pengetah. Alam LLDikti Wil. 1, vol. 4, no. 1, pp. 81–89, 2023, doi: 10.54076/jumpa.v3i2.305.
G. Budiprasetyo, M. Hani’ah, and D. Z. Aflah, “Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory (LSTM),” J. Nas. Teknol. dan Sist. Inf., vol. 8, no. 3, pp. 164–172, 2023, doi: 10.25077/teknosi.v8i3.2022.164-172.
R. Rahmadini, Enjel Erika LorencisLubis, Aji Priansyah, Yolanda R.W.N, and Tuti Meutia, “Penerapan Data Mining Untuk Memprediksi Harga Bahan Pangan Di Indonesia Menggunakan Algoritma K-Nearest Neighbor,” J. Mhs. Akunt. Samudra, vol. 4, no. 4, pp. 223–235, 2023, doi: 10.33059/jmas.v4i4.7074.
D. Nurfauzan and T. Fatimah, “Implementasi Algoritma K-Nearest Neighbors Regression Dalam Memprediksi Harga Saham,” Semin. Nas. Mhs. …, no. September, pp. 576–584, 2022, [Online]. Available: http://senafti.budiluhur.ac.id/index.php/senafti/article/view/391%0Ahttps://senafti.budiluhur.ac.id/index.php/senafti/article/download/391/67
Mukhlisin, M. Imrona, and D. T. Murdiansyah, “Prediksi Harga Beras Premium dengan Metode Algoritma K-Nearest Neighbor,” e-Proceeding Eng., vol. 7, no. 1, pp. 2714–2724, 2019.
U. M. Area, “Pengertian KNN.” 2023. [Online]. Available: https://lp2m.uma.ac.id/2023/02/16/algoritma-k-nearest-neighbors-knn-pengertian-dan-penerapan/
D. S. Seruni, M. T. Furqon, and R. C. Wihandika, “Sistem Prediksi Pertumbuhan Jumlah Penduduk Kota Malang menggunakan Metode K-Nearest Neighbor Regression,” Sist. Prediksi Pertumbuhan Jumlah Pendud. Kota Malang menggunakan Metod. K-Nearest Neighbor Regres., vol. 4, no. 4, pp. 1075–1082, 2020.
B. Kriswantara and R. Sadikin, “Used Car Price Prediction with Random Forest Regressor Model,” J. Inf. Syst. Informatics Comput. Issue Period, vol. 6, no. 1, pp. 40–49, 2022, doi: 10.52362/jisicom.v6i1.752.
M. Raynold, “Dataset Harga Mobil Toyota.” 2022. [Online]. Available: https://kaggle.com/datasets/muhammadraynold/datasetmobil
A. M. M. Fattah, A. Voutama, N. Heryana, and N. Sulistiyowati, “Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1669, 2022, doi: 10.30865/jurikom.v9i5.5021.
J. Setyanto and T. B. Sasongko, “Sentiment Analysis of Sirekap Application Users Using the Support Vector Machine Algorithm,” J. Appl. Informatics Comput., vol. 8, no. 1, pp. 71–76, 2024, doi: 10.30871/jaic.v8i1.7772.
H. Nuha, “Mean Squared Error (MSE) dan Penggunaannya,” Papers.Ssrn.Com, vol. 52, pp. 1–1, 2023, [Online]. Available: https://ssrn.com/abstract=4420880
A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” J. Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, 2023, doi: 10.24246/juses.v6i1p34-43.
M. A. Saputra, U. Hayati, T. Informatika, M. Informatika, R. Linier, and D. Mining, “Estimasi Harga Mobil Bekas Toyota Yaris menggunakan Algoritma Regresi Linier,” vol. 8, no. 2, pp. 1696–1701, 2024.
Copyright (c) 2025 Mauhiba Salmaa Ghaisani, Anna Baita
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).