A Banana Disease Detection Using MobileNetV2 Model Based on Adam Optimizer

Authors

  • Muhammad Syifa Aryanta Universitas Dian Nuswantoro
  • Christy Atika Sari Universitas Dian Nuswantoro
  • Eko Hari Rachmawanto Universitas Dian Nuswantoro

DOI:

https://doi.org/10.30871/jaic.v9i4.9870

Keywords:

Image, Detection, MobileNetV2, Deep Learning, Banana Disease

Abstract

The main objective of this study is to develop a deep learning-based disease detection system for banana plants using the MobileNetV2 architecture through a comprehensive comparison with VGG16. This study utilizes a dataset of 3,653 images categorized into 12 classes, including Aphids, Bacterial Soft Rot, Bract Mosaic Virus, Cordana, Insect Pest, Moko, Panama, Fusarium Wilt, Black Sigatoka, Yellow Sigatoka, Pestalotiopsis, and healthy specimens. The methodological framework includes architecture comparison, data balancing, preprocessing techniques, and performance evaluation. The dataset was divided with a distribution ratio of 75% for training, 15% for validation, and 10% for testing. Comparative analysis shows excellent performance of MobileNetV2 with an accuracy of 96.21% compared to 90.15% for VGG16, while maintaining a significantly smaller model size of 10.0 MB compared to 57.8 MB for VGG16. Statistical validation through the McNemar test confirms significant superiority with a p-value of 0.008. The findings of this study contribute positively to the development of agricultural technology, particularly in the development of automated systems for disease detection in banana plants.

Downloads

Download data is not yet available.

References

[1] S. Nasim, M. Rashid, S. A. Syed, and I. Brohi, “Artificial Intelligence Techniques for the Pest Detection in Banana Field: A Systematic Review,” Pakistan Journal of Biotechnology, vol. 20, no. 02, pp. 209–223, Jun. 2023, doi: 10.34016/pjbt.2023.20.02.746.

[2] J. Lu, X. Liu, X. Ma, J. Tong, and J. Peng, “Improved MobileNetV2 Crop Disease Identification Model for Intelligent Agriculture,” PeerJ Comput Sci, vol. 9, p. e1595, Sep. 2023, doi: 10.7717/peerj-cs.1595.

[3] J. Sharma et al., “Deep Learning Based Ensemble Model for Accurate Tomato Leaf Disease Classification by Leveraging ResNet50 and MobileNetV2 Architectures,” Sci Rep, vol. 15, no. 1, p. 13904, Apr. 2025, doi: 10.1038/s41598-025-98015-x.

[4] Y. Ferdi, “Data Augmentation through Background Removal for Apple Leaf Disease Classification Using the MobileNetV2 Model,” Nov. 2024, doi: https://doi.org/10.48550/arXiv.2412.01854.

[5] Sujatha R., S. Krishnan, J. M. Chatterjee, and H. A. Gandomi, “Advancing Plant Leaf Disease Detection Integrating Machine Learning And Deep Learning,” Sci Rep, vol. 15, no. 1, p. 11552, Apr. 2025, doi: 10.1038/s41598-024-72197-2.

[6] I. R. Syihad, M. Rizal, Z. Sari, and Y. Azhar, “CNN Method to Identify the Banana Plant Diseases based on Banana Leaf Images by Giving Models of ResNet50 and VGG-19,” Jurnal Rekayasa Sistem dan Teknologi Informasi, vol. 7, no. 6, pp. 1309–1318, Dec. 2023, doi: 10.29207/resti.v7i6.5000.

[7] K. Yan, M. K. C. Shisher, and Y. Sun, “A Transfer Learning-Based Deep Convolutional Neural Network for Detection of Fusarium Wilt in Banana Crops,” AgriEngineering, vol. 5, no. 4, pp. 2381–2394, Dec. 2023, doi: 10.3390/agriengineering5040146.

[8] M. G. Selvaraj et al., “Detection of Banana Plants and their Major Diseases through Aerial Images and Machine Learning Methods: A Case Study in DR Congo and Republic of Benin,” Journal of Photogrammetry and Remote Sensing, vol. 169, pp. 110–124, Nov. 2020, doi: 10.1016/j.isprsjprs.2020.08.025.

[9] D. Tribuana, Hazriani, and A. L. Arda, “Image Preprocessing Approaches Toward Better Learning Performance with CNN,” Jurnal Rekayasa Sistem dan Teknologi Informasi, vol. 8, no. 1, pp. 1–9, Jan. 2024, doi: 10.29207/resti.v8i1.5417.

[10] Helmawati Nita and Utami Ema, “Analysis for Detecting Banana Leaf Disease Using the CNN Method,” Jurnal Informatika, vol. 13, pp. 29–36, Mar. 2025, doi: 10.30595/juita.v13i1.24514.

[11] A. Ridhovan, A. Suharso, and C. Rozikin, “Disease Detection in Banana Leaf Plants using DenseNet and Inception Method,” Jurnal Rekayasa Sistem dan Teknologi Informasi, vol. 6, no. 5, pp. 710–718, Oct. 2022, doi: 10.29207/resti.v6i5.4202.

[12] S. Sanga, V. Mero, D. Machuve, and D. Mwanganda, “Mobile-Based Deep Learning Models for Banana Diseases Detection,” Engineering, Technology & Applied Science Research, pp. 1–4, Apr. 2020, doi: 10.48550/arXiv.2004.03718.

[13] J. D. Thiagarajan et al., “Analysis of Banana Plant Health Using Machine Learning Techniques,” Sci Rep, vol. 14, no. 1, p. 15041, Jul. 2024, doi: 10.1038/s41598-024-63930-y.

[14] saravana, “Banana Diseases Dataset,” Roboflow Universe. Accessed: Jun. 24, 2025. [Online]. Available: https://universe.roboflow.com/saravana-bi72l/banana-diseases-1bo8b

[15] N. Mduma and J. Leo, “Dataset of Banana Leaves and Stem Images for Object Detection, Classification and Segmentation: A Case of Tanzania,” Data Brief, vol. 49, pp. 1–5, Aug. 2023, doi: 10.1016/j.dib.2023.109322.

[16] R. K. Tirandasu and P. Yalla, “A Novel Classifier for Plant Health Monitoring: A Focus on Banana Leaf Disease Detection Using Deep Learning,” Journal of Information Systems Engineering and Management, vol. 10, no. 1s, pp. 184–197, Dec. 2024, doi: 10.52783/jisem.v10i1s.114.

[17] L. Nanni, M. Paci, S. Brahnam, and A. Lumini, “Comparison of Different Image Data Augmentation Approaches,” J Imaging, vol. 7, no. 12, p. 254, Nov. 2021, doi: 10.3390/jimaging7120254.

[18] N. A. Saran, M. Saran, and F. Nar, “Distribution-Preserving Data Augmentation,” PeerJ Comput Sci, vol. 7, p. e571, May 2021, doi: 10.7717/peerj-cs.571.

[19] S. Zhou, J. Zhang, H. Jiang, T. Lundh, and A. Y. Ng, “Data Augmentation with Mobius Transformations,” Mach Learn Sci Technol, vol. 2, no. 2, p. 025016, Jun. 2021, doi: 10.1088/2632-2153/abd615.

[20] W. Wang, Z. Shang, and C. Li, “Brain-Inspired Semantic Data Augmentation for Multi-Style images,” Front Neurorobot, vol. 18, Mar. 2024, doi: 10.3389/fnbot.2024.1382406.

[21] V. Sinap, “Bankruptcy Prediction with Optuna-Enhanced Ensemble Machine Learning Methods: A Comparison of Oversampling and Undersampling Techniques,” DÜMF Mühendislik Dergisi, vol. 16, no. 1, pp. 97–113, Mar. 2025, doi: 10.24012/dumf.1597564.

[22] A. I. ElSeddawy, F. K. Karim, A. M. Hussein, and D. S. Khafaga, “Predictive Analysis of Diabetes-Risk with Class Imbalance,” Comput Intell Neurosci, vol. 2022, pp. 1–16, Oct. 2022, doi: 10.1155/2022/3078025.

[23] S. Thakkar, C. Patel, and V. Suthar, “Plant Disease Idedntification using Machine Learning and Image Processing,” Journal on Soft Computing, vol. 13, no. 4, pp. 3043–3047, Jul. 2023, doi: 10.21917/ijsc.2023.0428.

[24] R. Muslim, Zaeniah, A. Akbar, B. Imran, and Zaenudin, “Disease Detection of Rice and Chili Based on Image Classification Using Convolutional Neural Network Android-Based,” Jurnal Pilar Nusa Mandiri, vol. 19, no. 2, pp. 85–96, Sep. 2023, doi: 10.33480/pilar.v19i2.4669.

[25] S. G. Brucal et al., “Development of Tomato Leaf Disease Detection using Single Shot Detector (SSD) Mobilenet V2,” International Journal of Computing Sciences Research, vol. 7, pp. 1857–1869, Jan. 2023, doi: 10.25147/ijcsr.2017.001.1.136.

[26] M. Abu-zanona, S. Elaiwat, S. Younis, N. Innab, and M. M. Kamruzzaman, “Classification of Palm Trees Diseases using Convolution Neural Network,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 6, 2022, doi: 10.14569/IJACSA.2022.01306111.

[27] N. Helmawati and E. Utami, “Utilization of the Convolutional Neural Network Method for Detecting Banana Leaf Disease,” Jurnal Rekayasa Sistem dan Teknologi Informasi, vol. 8, no. 6, pp. 799–804, Dec. 2024, doi: 10.29207/resti.v8i6.6140.

[28] A. Y. Ashurov et al., “Enhancing Plant Disease Detection through Deep Learning: A Depthwise CNN with Squeeze and Excitation Integration and Residual Skip Connections,” Front Plant Sci, vol. 15, pp. 1–16, Jan. 2025, doi: 10.3389/fpls.2024.1505857.

[29] N. L. Javier, T. D. Palaong, and C. A. S. Pamplona, “Deep Learning in Agritech: Exploring Techniques and Architectures for Plant Disease Detection,” Journal of Electrical Systems, vol. 20, no. 3s, pp. 1365–1372, Apr. 2024, doi: 10.52783/jes.1513.

[30] F. D. Adhinata, N. A. F. Tanjung, W. Widayat, G. R. Pasfica, and F. R. Satura, “Comparative Study of VGG16 and MobileNetV2 for Masked Face Recognition,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 7, no. 2, p. 230, Jul. 2021, doi: 10.26555/jiteki.v7i2.20758.

[31] Y. Liang, M. Li, and C. Jiang, “Generating self-attention activation maps for visual interpretations of convolutional neural networks,” Neurocomputing, vol. 490, pp. 206–216, Jun. 2022, doi: 10.1016/j.neucom.2021.11.084.

[32] M. George, K. Anita Cherian, and D. Mathew, “Symptomatology of Sigatoka leaf spot disease in banana landraces and identification of its pathogen as Mycosphaerella eumusae,” Journal of the Saudi Society of Agricultural Sciences, vol. 21, no. 4, pp. 278–287, May 2022, doi: 10.1016/j.jssas.2021.09.004.

Downloads

Published

2025-08-03

How to Cite

[1]
M. S. Aryanta, C. A. Sari, and E. H. Rachmawanto, “A Banana Disease Detection Using MobileNetV2 Model Based on Adam Optimizer”, JAIC, vol. 9, no. 4, pp. 1207–1218, Aug. 2025.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.