Real-Time Waste Detection System Using YOLOv12 with Transfer Learning

Authors

  • Adellia Jovina Universitas Bunda Mulia
  • Ester Lumba Universitas Bunda Mulia

DOI:

https://doi.org/10.30871/jaic.v10i1.12050

Keywords:

YOLOv12, Waste Detection, Transfer Learning, Computer Vision, Web-Based System

Abstract

Waste sorting at the source remains a major challenge in Indonesia due to limited public awareness and the absence of accessible tools for waste classification. While YOLO-based object detection has been widely applied for waste detection, the adoption of the latest YOLO architecture in web-based, real-time public-oriented systems remains limited. This study aims to develop and experimentally evaluate a web-based waste detection system using YOLOv12 with a transfer learning approach to classify waste into organic, inorganic, and hazardous (B3) categories along with their subcategories. The system was developed using the Flask framework and supports image upload and real-time camera-based detection. A real-world dataset was annotated and divided into training, validation, and testing sets for experimental evaluation. The proposed model achieved a precision of 0.86, recall of 0.74, [email protected] of 0.83, and [email protected]:0.95 of 0.68, with an average inference time of 0.0187 seconds per image (53.40 FPS). Overall, these results indicate that YOLOv12 with transfer learning provides an effective balance between accuracy and inference speed for web-based real-time waste detection systems, supporting its applicability for practical waste sorting solutions.

Downloads

Download data is not yet available.

References

[1] Kementerian Lingkungan Hidup dan Kehutanan, “Capaian Kinerja Pengelolaan Sampah.” Accessed: Jun. 20, 2025. [Online]. Available: https://sipsn.kemenlh.go.id/sipsn/

[2] E. Supriyanto, R. R. Isnanto, and S. H. Purnomo, Deteksi Dan Klasifikasi Kesehatan Ayam Menggunakan Yolo Dengan Google Colab. Pagar Alam: PENERBIT LD Media, 2025.

[3] O. Soerya, N. Utomo, F. Utaminingrum, and E. R. Widasari, “Implementasi YOLO versi 3 untuk Mengidentifikasi dan Mengklasifikasi Sampah Kantor berbasis NVIDIA Jetson Nano,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 6, pp. 2829–2834, Jun. 2022, [Online]. Available: http://j-ptiik.ub.ac.id

[4] H. Abdillah, A. N. Syahbana, G. I. Al Husain, and S. Agustin, “Detektif Sampah : Klasifikasi Jenis Sampah Organik dan Anorganik Menggunakan Metode YOLOv5 Berbasis Website,” Jurnal INOVATIF WIRA WACANA, vol. 3, no. 2, pp. 128–135, Aug. 2024.

[5] N. Suwela and M. Z. Hedriyadi, “Deteksi Jenis Sampah Menggunakan Metode Transfer Learning YOLO-V8,” Jurnal Sistem Informasi dan Sains Teknologi, vol. 7, no. 1, Feb. 2025.

[6] A. A. Mustapha, S. ’Atifah Saruchi, M. I. Solihin, F. K. Aldeen, and A. A. M. Al-Talib, “Exploring the Performance of YOLOv11: Detecting Compostable and Non-Compostable Kitchen Waste in Real-Time Applications,” The 2025 International Conference on Artificial Life and Robotics (ICAROB2025), pp. 13–16, Feb. 2025.

[7] M. H. Dipo et al., “Real-Time Waste Detection and Classification Using YOLOv12-Based Deep Learning Model,” Digital, vol. 5, no. 2, pp. 1–17, Jun. 2025, doi: 10.3390/digital5020019.

[8] Keylabs, “YOLOv8 vs Faster R-CNN: A Comparative Analysis,” Keylabs. Accessed: Aug. 17, 2025. [Online]. Available: https://keylabs.ai/blog/yolov8-vs-faster-r-cnn-a-comparative-analysis/?utm_source=chatgpt.com

[9] S. Srivastava, A. V. Divekar, C. Anilkumar, I. Naik, V. Kulkarni, and V. Pattabiraman, “Comparative analysis of deep learning image detection algorithms,” J Big Data, vol. 8, May 2021, doi: 10.1186/s40537-021-00434-w.

[10] Ultralytics Inc., “YOLO12: Attention-Centric Object Detection.” Accessed: Jun. 21, 2025. [Online]. Available: https://docs.ultralytics.com/models/yolo12/

[11] A. E. Putra, M. F. Naufal, and V. R. Prasetyo, “Klasifikasi Jenis Rempah Menggunakan Convolutional Neural Network dan Transfer Learning,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 9, no. 1, Apr. 2023.

[12] M. W. S. Sanjaya, Deep Learning Citra Medis Berbasis Pemrograman Python. Bandung: BOLABOT, 2023.

[13] I. G. N. Suryantara, Michael, J. F. Andry, and J. A. Ginting, “PENGEMBANGAN APLIKASI OPERASIONAL RESTORAN DENGAN FRAMEWORK SCRUM (STUDI KASUS: RESTORAN PT.XYZ),” Infotech: Journal of Technology Information, vol. 9, no. 2, pp. 117–128, Nov. 2023, doi: 10.37365/jti.v9i2.168.

[14] L. Syaputri, E. G. Putra, E. Syahrani, E. Dwian, and F. Purwani, “PERBANDINGAN EFEKTIVITAS METODE WATERFALL DAN AGILE DALAM PENGEMBANGAN SISTEM INFORMASI SEBUAH SYSTEMATIC LITERATURE REVIEW,” Journal of Scientech Research and Development, vol. 6, no. 2, pp. 262–273, 2024, doi: 10.35870/jtik.v6i1.380.

[15] S. Iqbal, I. Al-Azzoni, G. Allen, and H. U. Khan, “Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements,” E-Informatica Software Engineering Journal, vol. 14, no. 1, pp. 97–115, 2020, doi: 10.37190/e-INF200104.

[16] S. Nabila, A. R. Putri, A. Hafizhah, F. H. Rahmah, and R. Muslikhah, “Pemodelan Diagram UML Pada Perancangan Sistem Aplikasi Konsultasi Hewan Peliharaan Berbasis Android (Studi Kasus: Alopet),” Jurnal Ilmu Komputer dan Bisnis, vol. 12, no. 2, pp. 130–139, Nov. 2021, doi: 10.47927/jikb.v12i2.150.

[17] J. F. Andry, F. S. Lee, K. Christianto, Y. Purnomo, A. Chakir, and L. Liliana, “User-Centric Development of Good Delivery Applications Using Design Thinking and Business Model Canvas,” EAI Endorsed Transactions on Scalable Information Systems, vol. 12, no. 4, Oct. 2025, doi: 10.4108/eetsis.8223.

[18] R. S. Samosir, E. Lumba, and P. P. Situmorang, “A PROTOTYPE OF DIGITAL LIBRARY APPLICATION USING MICROFRAMEWORK FLASK,” Jurnal Techno Nusa Mandiri, vol. 19, no. 2, pp. 96–103, Sep. 2022, doi: 10.33480/techno.v19i2.3006.

[19] N. M. D. Febriyanti, A. A. K. O. Sudana, and I. N. Piarsa, “Implementasi Black Box Testing pada Sistem Informasi Manajemen Dosen,” Jurnal Ilmiah Teknologi dan Komputer, vol. 2, no. 3, Dec. 2021.

Downloads

Published

2026-02-04

How to Cite

[1]
A. Jovina and E. Lumba, “Real-Time Waste Detection System Using YOLOv12 with Transfer Learning”, JAIC, vol. 10, no. 1, pp. 284–297, Feb. 2026.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.