Sentiment Analysis on Google Reviews Using Naïve Bayes, K-Nearest Neighbors, and Logistic Regression to Improve Novotel Services
Abstract
The application of artificial intelligence (AI) has been widely used in various industrial sectors, including the hospitality industry. One of the applications that is widely used in the hospitality industry is sentiment analysis. Sentiment analysis is carried out by analyzing feedback data from hotel guests or customers. The results of this sentiment analysis are important for decision makers to improve and improve their services. This study aims to obtain sentiment analysis results from Novotel hotel Google reviews based on machine learning by comparing three algorithms, namely Naïve Bayes, K-Nearest Neighbors (KNN), and Logistic Regression. The stages carried out in this study are data collection, data labeling, exploratory data analysis (EDA), data preprocessing, text representation, data sharing, modeling, model training, model evaluation, selection of the most accurate model, visualization of the most accurate model, interpretation of results and writing research reports. The dataset used was 1200 reviews, only 1190 reviews were used in the analysis. From the training results, the model produced by the Logistic Regression algorithm was the most accurate, namely 94.54% with unigrams (n = 1). Here are the results of each category, positive as many as 723 reviews (60.76%), negative as many as 218 reviews (18.32%), and neutral as many as 249 reviews (20.92%). Thus, most of the sentiment towards the service is positive, but some services need to be fixed and improved for customer satisfaction. The next research, the research area is expanded and the use of Deep Learning.
Downloads
References
“AI vs. machine learning vs. deep learning vs. neural networks: What’s the difference?,” IBM. Accessed: Nov. 02, 2024. [Online]. Available: https://www.ibm.com/think/topics/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
S. P. Barus and E. Surijati, “Chatbot with Dialogflow for FAQ Services in Matana University Library,” International Journal of Informatics and Computation (IJICOM), vol. 3, no. 2, 2021, doi: 10.35842/ijicom.
T. P. Nagarhalli, V. Vaze, and N. K. Rana, “Impact of Machine Learning in Natural Language Processing: A Review,” in 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), 2021, pp. 1529–1534. doi: 10.1109/ICICV50876.2021.9388380.
H. Tuhutueru, L. P. Refialy, M. Laturake, and S. G. Pattirane, “Tourist Perceptions Through Sentiment Analysis to Support Tourism Development in Maluku Province,” Journal of Applied Informatics and Computing (JAIC), vol. 8, no. 1, pp. 119–126, 2024, doi: https://doi.org/10.30871/jaic.v8i1.6989.
S. Kemp, “Digital 2024: Global Overview Report,” DataReportal – Global Digital Insights. Accessed: Nov. 02, 2024. [Online]. Available: https://datareportal.com/reports/digital-2024-global-overview-report
Y. Li, Z. Lin, and S. Xiao, “Using social media big data for tourist demand forecasting: A new machine learning analytical approach,” Journal of Digital Economy, vol. 1, no. 1, pp. 32–43, Jun. 2022, doi: 10.1016/j.jdec.2022.08.006.
K. Puh and M. B. Babac, “Predicting sentiment and rating of tourist reviews using machine learning,” Journal of Hospitality and Tourism Insights, vol. 6, no. 3, pp. 1188–1204, Jun. 2023, doi: 10.1108/JHTI-02-2022-0078.
M. J. Andiana, M. Martanto, and U. Hayati, “Analisis Sentimen Review Hotel Menggunakan Metode Naïve Bayes pada Hotel di Wilayah Kota Cirebon,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 284–264, 2024.
M. I. Tuku, E. Umar, and A. Adis, “Analisis Sentimen Review Hotel Menggunakan Algoritma Naive Bayes Pada Ella Hotel Tambolaka,” Journal Of Informatics And Busisnes, vol. 02, no. 03, pp. 346–356, 2024.
D. F. P. Rachmawan, M. H. P. Swari, and C. A. Putra, “Analisis Sentimen Review Hotel Favehotel Kusumanegara Menggunakan Algoritma Multinomial Naive Bayes,” Seminar Nasional Informatika Bela Negara(SANTIKA), vol. 3, pp. 155–159, 2023, doi: https://doi.org/10.33005/santika.v3i.
A. Munir, E. P. Atika, and A. D. Indraswari, “Analisis sentimen pada review hotel menggunakan metode pembobotan dan klasifikasi,” JNANALOKA, vol. 3, no. 1, pp. 33–38, 2022, doi: 10.36802/jnanaloka.v3-no1-33-38.
T. Safitri, Y. Umaidah, and I. Maulana, “Analisis Sentimen Pengguna Twitter Terhadap BTS Menggunakan Algoritma Support Vector Machine,” Journal of Applied Informatics and Computing (JAIC), vol. 7, no. 1, pp. 34–41, 2023, doi: https://doi.org/10.30871/jaic.v7i1.5039.
J. Setyanto and T. B. Sasongko, “Sentiment Analysis of Sirekap Application Users Using the Support Vector Machine Algorithm,” Journal of Applied Informatics and Computing (JAIC), vol. 8, no. 1, pp. 71–76, 2024, doi: https://doi.org/10.30871/jaic.v8i1.7772.
H. P. Doloksaribu and Y. T. Samuel, “Komparasi Algoritma Data Mining Untuk Analisis Sentimen Aplikasi Pedulilindungi,” Jurnal Teknologi Informasi, vol. 16, no. 1, 2022, doi: 10.47111/JTI.
R. Merdiansah, S. Siska, and A. A. Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI, vol. 7, no. 1, pp. 221–228, 2024.
M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” Journal of Information Technology and Computer Science (INTECOMS), vol. 5, no. 1, pp. 1–7, 2022.
G. R. Ditami., E. F. Ripanti, and H. Sujaini, “Implementasi Support Vector Machine untuk Analisis Sentimen Terhadap Pengaruh Program Promosi Event Belanja pada Marketplace,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 8, no. 3, pp. 508–516, 2022, doi: https://doi.org/10.26418/jp.v8i3.56478.
D. S. Putri and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi Pospay dengan Algoritma Support Vector Machine,” Jurnal Ilmiah Informatika, vol. 11, no. 1, pp. 32–40, 2023, doi: https://doi.org/10.33884/jif.v11i01.6611.
Z. Drus and H. Khalid, “Sentiment analysis in social media and its application: Systematic literature review,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 707–714. doi: 10.1016/j.procs.2019.11.174.
A. S. Munir, A. B. Saputra, A. Aziz, and M. A. Barata, “Perbandingan Akurasi Algoritma Naive Bayes dan Algoritma Decision Tree dalam Pengklasifikasian Penyakit Kanker Payudara,” Jurnal Ilmiah Informatika Global, vol. 15, no. 1, pp. 23–29, 2024.
N. A. Jiana and B. Hartono, “Sentimen Analisa Ulasan Aplikasi Access by KAI pada Google Play Store menggunakan Algoritma K-NN,” Jurnal Media Informatika Budidarma, vol. 8, no. 3, pp. 1388–1397, Jul. 2024, doi: 10.30865/mib.v8i3.7730.
K. Kelvin, J. Banjarnahor, E. Indra, M. NK. Nababan, and S. H. Sinurat, “Analisis perbandingan sentimen Corona Virus Disease-2019 (Covid19) pada Twitter Menggunakan Metode Logistic Regression Dan Support Vector Machine (SVM),” JUSIKOM PRIMA, vol. 5, no. 2, pp. 47–52, 2022, doi: https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2365.
R. N. J. S.Intam, Wulandari, A. A. N. Risal, and D. F. Surianto, “Klasifikasi Mahasiswa Berprestasi Menggunakan Fuzzy C-Means Dan Naive Bayes,” Jurnal Ilmiah Informatika Global, vol. 15, no. 1, pp. 9–16, 2024, doi: https://doi.org/10.36982/jiig.v15i1.3666.
“Belajar Dasar Visualisasi Data,” Dicoding Indonesia. Accessed: Nov. 02, 2024. [Online]. Available: https://www.dicoding.com/academies/177
A. Munna and E. Zuliarso, “Interpretasi model Stacking Ensemble untuk analisis sentimen ulasan aplikasi pinjaman online menggunakan LIME,” Jurnal Teknologi Informasi, vol. 21, no. 2, pp. 183–196, 2024, doi: https://doi.org/10.24246/aiti.v21i2.183-196.
Copyright (c) 2025 Yonathan Arya Dhamma, Simon Prananta Barus
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).