Sentiment Analysis of Telegram App Reviews on Google Play Store Using the Support Vector Machine (SVM) Algorithm

  • Nofsa Atia Nevrada Sistem Informasi, Universitas Dharma Wacana
  • Muhammad Adie Syaputra Sistem Informasi, Universitas Dharma Wacana
Keywords: Data pre-processing, Positive and negative sentiment classification, Sentiment analysis, Support Vector Machine, Telegram application reviews

Abstract

This study aims to analyze the sentiment of Telegram application reviews on the Google Play Store using the Support Vector Machine (SVM) algorithm. From a total of 14,700,000 initial reviews, a sampling technique was carried out to obtain 400 review data, which then went through the pre-processing stage to produce 345 review data to be classified. The SVM model used showed good performance with an accuracy of 81.16%, precision in the positive class reached 93%, recall in the negative class of 94%, and an average f1-score of around 81%. However, there was a discrepancy between the high rating and the content of the review, which highlighted the existence of high-rated reviews that contained criticism or vice versa. The confusion matrix analysis also showed some misclassification, where reviews should be categorized as positive sentiment but detected as negative, and vice versa. This research is expected to provide valuable feedback for Telegram application developers to improve the quality of service, although the results of this analysis have not been fully discussed in practice. The limitation of this study is that it only tested reviews that used Indonesian, which limited the scope of the findings to the context of local users.

Downloads

Download data is not yet available.

References

N. Andre Saputra, J. Alexandra, Dan I. Budi Trisno, “Analisis Sentimen Pemanfaatan Obrolan Grup Telegram Berbagi Informasi Lowongan Kerja Menggunakan Metode Naïve Bayes Classifier,” Jati, Vol. 7, No. 2, Hlm. 1321–1327, Sep 2023, Doi: 10.36040/Jati.V7i2.6693.

Universiti Pendidikan Sultan Idris, N. Abu Bakar, F. N. Mohd Rofizi, Universiti Pendidikan Sultan Idris, N. F. Mohd Rusli, Dan Universiti Pendidikan Sultan Idris, “Telegram As An Alternative Medium In The Teaching And Learning Process At Home (Pdpr),” Oj-Tp, Vol. 7, No. 2, Sep 2022, Doi: 10.30880/Ojtp.2022.07.02.008.

D. T. Lukmana, S. Subanti, Dan Y. Susanti, “Analisis Sentimen Terhadap Calon Presiden 2019 Dengan Support Vector Machine Di Twitter,” 2019.

A. P. Natasuwarna, “Seleksi Fitur Support Vector Machine Pada Analisis Sentimen Keberlanjutan Pembelajaran Daring,” Tc, Vol. 19, No. 4, Hlm. 437–448, Nov 2020, Doi: 10.33633/Tc.V19i4.4044.

K. A. Rokhman, B. Berlilana, Dan P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” Joism, Vol. 3, No. 1, Hlm. 1–7, Jan 2021, Doi: 10.24076/Joism.2021v3i1.341.

A. Saepulrohman, S. Saepudin, Dan D. Gustian, “Analisis Sentimen Kepuasan Pengguna Aplikasi Whatsapp Menggunakan Algoritma Naã¯Ve Bayes Dan Support Vector Machine,” Aisthebest, Vol. 6, No. 2, Hlm. 91–105, Des 2021, Doi: 10.34010/Aisthebest.V6i2.4919.

S. Rita, D. Indrayana, Dan A. Pambudi, “Penggunaan Support Vector Machine Untuk Analisis Sentimen Ulasan Aplikasi Truecaller Dan Getcontact,” Bit, Vol. 20, No. 2, Hlm. 131, Sep 2023, Doi: 10.36080/Bit.V20i2.2493.

S. Fide, S. Suparti, Dan S. Sudarno, “Analisis Sentimen Ulasan Aplikasi Tiktok Di Google Play Menggunakan Metode Support Vector Machine (Svm) Dan Asosiasi,” J.Gauss, Vol. 10, No. 3, Hlm. 346–358, Des 2021, Doi: 10.14710/J.Gauss.V10i3.32786.

R. Maulana, A. Voutama, Dan T. Ridwan, “Analisis Sentimen Ulasan Aplikasi Mypertamina Pada Google Play Store Menggunakan Algoritma Nbc,” J. Teknologi Terpadu, Vol. 9, No. 1, Hlm. 42–48, Jul 2023, Doi: 10.54914/Jtt.V9i1.609.

A. F. Putri, G. Manik, F. Nabila, Dan N. Chamidah, “Implementasi Scraping Google Scholar Menggunakan Html Dom Untuk Pengumpulan Data Artikel Dosen Upn Veteran Jakarta Berbasis Web”.

L. Hidayati, L. P. Kusuma, D. Agustini, Dan V. Y. P. Ardhana, “Implementasi Web Scraping Untuk Pengumpulan Data Media Sosial Lingkup Pemerintah Provinsi Ntb,” J.Sist.Inf.Inform., Vol. 7, No. 1, Hlm. 63–72, Mar 2024, Doi: 10.47080/Simika.V7i1.3200.

D. A. C. Rachman, R. Goejantoro, Dan F. D. T. Amijaya, “Implementasi Text Mining Pengelompokkan Dokumen Skripsi Menggunakan Metode K-Means Clustering,” J. Eksponensial, Vol. 11, No. 2, Hlm. 167, Jan 2021, Doi: 10.30872/Eksponensial.V11i2.660.

S. Wahyu Handani, D. Intan Surya Saputra, Hasirun, R. Mega Arino, Dan G. Fiza Asyrofi Ramadhan, “Sentiment Analysis For Go-Jek On Google Play Store,” J. Phys.: Conf. Ser., Vol. 1196, Hlm. 012032, Mar 2019, Doi: 10.1088/1742-6596/1196/1/012032.

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, Dan S. Samudi, “Analisis Sentimen Zoom Cloud Meetings Di Play Store Menggunakan Naïve Bayes Dan Support Vector Machine,” Com, Engine, Sys, Sci, Vol. 5, No. 2, Hlm. 293, Jul 2020, Doi: 10.24114/Cess.V5i2.18186.

T. Safitri, Y. Umaidah, Dan I. Maulana, “Analisis Sentimen Pengguna Twitter Terhadap Bts Menggunakan Algoritma Support Vector Machine,” Vol. 7, No. 1.

A. D. Adhi Putra, “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Bibit Dan Bareksa Dengan Algoritma Knn,” Jatisi, Vol. 8, No. 2, Hlm. 636–646, Jun 2021, Doi: 10.35957/Jatisi.V8i2.962.

M. I. Ahmadi, F. Apriani, M. Kurniasari, S. Handayani, Dan D. Gustian, “Sentiment Analysis Online Shop On The Play Store Using Method Support Vector Machine (Svm),” 2020.

R. Mahendrajaya, G. A. Buntoro, Dan M. B. Setyawan, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,” Jkt, Vol. 3, No. 2, Hlm. 52, Okt 2019, Doi: 10.24269/Jkt.V3i2.270.

D. Safryda Putri Dan T. Ridwan, “Analisis Sentimen Ulasan Aplikasi Pospay Dengan Algoritma Support Vector Machine,” Oai, Vol. 11, No. 01, Hlm. 32–40, Mar 2023, Doi: 10.33884/Jif.V11i01.6611.

N. Cahyono Dan Anggista Oktavia Praneswara, “Analisis Sentimen Ulasan Aplikasi Tiktok Shop Seller Center Di Google Playstore Menggunakan Algoritma Naive Bayes,” Ijcs, Vol. 12, No. 6, Des 2023, Doi: 10.33022/Ijcs.V12i6.3473.

T. Turki Dan S. S. Roy, “Novel Hate Speech Detection Using Word Cloud Visualization And Ensemble Learning Coupled With Count Vectorizer,” Applied Sciences, Vol. 12, No. 13, Hlm. 6611, Jun 2022, Doi: 10.3390/App12136611.

A. Kusuma Dan H. N. Irmanda, “Analisis Sentimen Pada Ulasan Aplikasi Indodax Di Google Play Store Menggunakan Metode Support Vector Machine”.

N. P. Husain Dan A. F. Syam, “Analisis Sentimen Ulasan Pengguna Tiktok Pada Google Play Store Berbasis Tf-Idf Dan Support Vector Machine,” Vol. 5, No. 1, 2024.

Gilbert, Syariful Alam, Dan M. Imam Sulistyo, “Analisis Sentimen Berdasarkan Ulasan Pengguna Aplikasi Mypertamina Pada Google Playstore Menggunakan Metode Naïve Bayes,” Storage: Jurnal Ilmiah Teknik Dan Ilmu Komputer, Vol. 2, No. 3, Hlm. 100–108, Agu 2023, Doi: 10.55123/Storage.V2i3.2333.

D. Normawati Dan S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Vol. 5, 2021.

B. F. S. Supriyanto Dan S. Rosalin, “Analisis Sentimen Program Merdeka Belajar Dengan Text Analysis Wordcloud & Word Frequency,” Jmp, Vol. 12, No. 1, Hlm. 25–32, Mar 2023, Doi: 10.33395/Jmp.V12i1.12312.

Published
2025-01-15
How to Cite
[1]
N. Nevrada and M. A. Syaputra, “Sentiment Analysis of Telegram App Reviews on Google Play Store Using the Support Vector Machine (SVM) Algorithm”, JAIC, vol. 9, no. 1, pp. 96-105, Jan. 2025.
Section
Articles