Implementation of the Naive Bayes Classifier Algorithm for Classifying Toddler Nutritional Status
Abstract
This research addresses the pressing issue of malnutrition among toddlers in Indonesia, aiming to classify their nutritional status using the Naive Bayes Classifier (NBC). The study utilizes a dataset comprising 958 records from Puskesmas Cilandak and categorizes nutritional status into six class labels: good nutrition, at risk of excess nutrition, excess nutrition, obesity, undernutrition, and severe malnutrition. The methodology includes data preprocessing techniques such as class weighting to tackle class imbalance and Principal Component Analysis (PCA) for effective feature extraction. The model's performance is evaluated using metrics such as accuracy, precision, recall, and F1 score, achieving an impressive accuracy of 85.76% when class weighting is applied, which significantly enhances the recall and F1 scores for minority classes. The findings highlight the critical importance of robust preprocessing and evaluation metrics in improving machine learning models for public health applications. Furthermore, they suggest that further exploration of alternative algorithms and dataset expansion could yield more comprehensive insights into the classification of toddler nutritional status.
Downloads
References
Eva Safitri, “Soroti Gizi Buruk Anak, Kris Dayanti Dorong Pemerintah Fokus Kedaulatan Pangan,” detiknews. Accessed: Oct. 08, 2024. [Online]. Available: https://news.detik.com/berita/d-6979677/soroti-gizi-buruk-anak-kris-dayanti-dorong-pemerintah-fokus-kedaulatan-pangan
E. Ramon, A. Nazir, and L. Oktavia, “Klasifikasi Status Gizi Bayi Posyandu Kecamatan Bangun Purba Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Sistem Informasi dan Informatika (Simika) P-ISSN, vol. 5, pp. 2622–6901, 2022.
D. Gizi, M. Direktorat, J. Kesehatan, M. Kementerian, and K. 2018, “Hasil Pemantauan Status Gizi (PSG) Tahun 2017.”
A. C. Müller and S. Guido, Introduction to Machine Learning with Python A Guide For Data Scientists Introduction to Machine Learning with Python. Gravenstein Highway North, Sebastopol: O’Reilly Media, Inc., 2016.
Harliana and D. Anggraini, “Penerapan Algoritma Naïve Bayes Pada Klasifikasi Status Gizi Balita di Posyandu Desa Kalitengah (Harliana, Dewi Anggraini),” Jurnal Informatika Komputer, Bisnis, dan Manajemen, vol. 21, no. 2, 2023.
S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes Orange Data Mining Implementation For Student Graduation Classification Using K-Nearest Neighbor, Decision Tree And Naive Bayes Models,” Jurnal Ilmiah NERO, vol. 6, no. 2, 2021.
Moch. Rizky Yuliansyah, M. B, and A. Franz, “Perbandingan Metode K-Nearest Neighbors dan Naïve Bayes Classifier Pada Klasifikasi Status Gizi Balita di Puskesmas Muara Jawa Kota Samarinda,” Adopsi Teknologi dan Sistem Informasi (ATASI), vol. 1, no. 1, pp. 08–20, Jun. 2022, doi: 10.30872/atasi.v1i1.25.
I. P. Putri, T. Terttiaavini, and N. Arminarahmah, “Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 257–265, Jan. 2024, doi: 10.57152/malcom.v4i1.1078.
S. Kenia, P. Loka, and A. Marsal, “Comparison Algorithm of K-Nearest Neighbor and Naïve Bayes Classifier for Classifying Nutritional Status in Toddlers Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier Untuk Klasifikasi Status Gizi Pada Balita,” MALCOM : Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 1, pp. 8–14, 2023.
R. Setiawan and A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” Jurnal Media Informatika Budidarma, vol. 6, no. 2, p. 777, Apr. 2022, doi: 10.30865/mib.v6i2.3566.
G. Gumelar, Q. Ain, R. Marsuciati, S. Agustanti Bambang, A. Sunyoto, and M. Syukri Mustafa, “Kombinasi Algoritma Sampling dengan Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance,” in Prosiding Seminar Nasional SISFOTEK, 2021, pp. 250–255.
H. Said, N. Matondang, H. Nurramdhani Irmanda, and S. Informasi, “Penerapan Algoritma K-Nearest Neighbor Untuk Memprediksi Kualitas Air Yang Dapat Dikonsumsi Application of K-Nearest Neighbor Algorithm to Predict Consumable Water Quality,” Techno COM, vol. 21, no. 2, pp. 256–267, 2022, [Online]. Available: www.kaggle.com
D. Aditya Nugraha and A. Sartika Wiguna, “Seleksi Fitur Warna Citra Digital Biji Kopi Menggunakan Metode Principal Component Analysis Digital Image Selection of Coffee Seed Using Component Analysis Method,” 2020.
Baiq Nurul Azmi, Arief Hermawan, and Donny Avianto, “Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver,” JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 4, no. 4, pp. 281–290, Feb. 2023, doi: 10.35746/jtim.v4i4.298.
S. Raysyah, V. Arinal, and D. I. Mulyana, “Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode KNN dan PCA,” Jurnal Sistem Informasi (JSiI), vol. 8, no. 2, pp. 88–95, 2021.
Sumaiya Sande, “Principal Component Analysis (PCA) : Theory,” Analytics Vidhya, Medium. Accessed: Oct. 10, 2024. [Online]. Available: https://medium.com/analytics-vidhya/principal-component-analysis-theory-bc87ef8c31af
T. Mitchell and M. Hill, Chapter 3 Generative And Discriminative Classifiers: Naive Bayes And Logistic Regression Machine Learning 1 Learning Classifiers based on Bayes Rule, vol. 3. CMU School of Computer Science, 2017. [Online]. Available: www.cs.cmu.edu/∼tom/mlbook.html.
Copyright (c) 2024 Muhammad Insan Kamil, Adityo Permana Wibowo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).