Match Outcome Prediction in Draft Pick and In-game Phases of MSC 2025 Mobile Legends using Random Forest and XGBoost

Authors

  • Dzaky Fadli Firmansyah Universitas Amikom Purwokerto
  • Adam Prayogo Kuncoro Universitas Amikom Purwokerto
  • Riyanto Riyanto Universitas Amikom Purwokerto

DOI:

https://doi.org/10.30871/jaic.v9i6.11658

Keywords:

Draft Pick, In-game, Mobile Legends, XGBoost, Random Forest

Abstract

Mobile Legends: Bang Bang is a widely played Multiplayer Online Battle Arena game in Southeast Asia, and its competitive ecosystem has driven the need for accurate match outcome prediction. Most existing studies analyze either the draft pick phase or the in game phase in isolation, limiting their ability to capture the full progression of a match. To address this limitation, this study evaluates the performance of Random Forest and Extreme Gradient Boosting (XGBoost) in predicting match outcomes across both phases using data from the MSC 2025 tournament. The dataset was collected from Liquipedia’s official API and match replay recordings. Draft pick features represent team composition factors such as synergy, hero strength, and patch impact, while in game features consist of statistical indicators including gold, kills, turrets, and objectives extracted from multiple time based snapshots. Both models were trained using qualification stage matches and tested on the main event. A phase separated hybrid feature engineering approach was employed to represent strategic differences between the draft pick and in game phases. Evaluation metrics include accuracy, precision, recall, F1 score, and ROC AUC. Results show that the draft pick models achieved a maximum accuracy of 57%, whereas the in game models reached 88% for Random Forest and 84% for XGBoost, with both achieving a ROC AUC of 0.94. These findings indicate that snapshot based in game features provide stronger predictive signals than draft pick composition features, which reflect only the initial strategic potential rather than actual match conditions.

Downloads

Download data is not yet available.

References

[1] B. R. Irwanto dan N. W. Wuryandari, “Character Transformation In The Game Mobile Legends: Bang Bang! (MLBB) And Its Impact,” Bambuti : Bahasa Mandarin dan Kebudayaan Tiongkok, vol. 5, no. 2, hlm. 1–28, Nov 2023, doi: 10.53744/bambuti.v5i2.84.

[2] M. E. Yulianto dan Y. Kristian, “Utilization of MLP and LSTM Methods in Hero Selection Recommendations for the Game of Mobile Legends: Bang Bang,” Teknika, vol. 14, no. 1, hlm. 142–149, Mar 2025, doi: https://doi.org/10.34148/teknika.v14i1.1201.

[3] I. G. W. Sena dan A. W. R. Emanuel, “Mobile Legend Game Prediction Using Machine Learning Regression Method,” Jurnal Teknologi dan Sistem Informasi, vol. 9, no. 2, hlm. 221–230, Mar 2023, doi: 10.33330/jurteksi.v9i2.1866.

[4] M. A. Tamaza, S. Defit, dan S. Sumijan, “Implementasi Naïve Bayes dalam M-Series 4 Mobile Legends untuk Prediksi Kemenangan,” Computer Science and Information Technology, vol. 5, no. 1, hlm. 205–214, Mei 2024, doi: 10.37859/coscitech.v5i1.6707.

[5] D. Sulaiman dan W. S. Utami, “Rancang Bangun Sistem Rekomendasi Pemilihan Hero Pada Game Mobile Legends Menggunakan Algoritma Greedy,” Journal of Information Technology and Computer Science, vol. 6, no. 2, hlm. 998–1007, Nov 2023, doi: 10.31539/intecoms.v6i2.8128.

[6] Y. N. R. Putro, A. Afriansyah, dan R. Bagaskara, “Penggunaan Algoritma Gaussian Naïve Bayes & Decision Tree Untuk Klasifikasi Tingkat Kemenangan Pada Game Mobile Legends,” Jurnal Komputer dan Informatika, vol. 6, no. 1, hlm. 10–26, Mei 2024, doi: 10.53842/juki.v6i1.472.

[7] M. Hamir dan P. N. Andono, “Model Neural Network untuk Memprediksi Tingkat Kemenangan Berdasarkan Draft Pick Mobile Legends,” Jurnal Pendidikan dan Teknologi Indonesia, vol. 5, no. 4, hlm. 899–908, Apr 2025, doi: 10.52436/1.jpti.723.

[8] S. Chowdhury, M. Ahsan, dan P. Barraclough, “Applications of Linear and Ensemble-Based Machine Learning for Predicting Winning Teams in League of Legends,” Applied Sciences, vol. 15, no. 10, hlm. 5241, Mei 2025, doi: 10.3390/app15105241.

[9] A. A. Kamal, Mohd. A. Mansor, L. Truna, N. Mohd. Shaipullah, dan N. H. H. Sultan, “Machine Learning Applications in Multiplayer Online Battle Arena Esports—A Systematic Review,” JST, vol. 33, no. 2, Mar 2025, doi: https://doi.org/10.47836/pjst.33.2.11.

[10] Stanlly, F. A. Putra, dan N. N. Qomariyah, “DOTA 2 Win Loss Prediction from Item and Hero Data with Machine Learning,” dalam 2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), BALI, Indonesia: IEEE, Jul 2022, hlm. 204–209. doi: 10.1109/IAICT55358.2022.9887525.

[11] J. Tyran dan L. Chomatek, “Influence of outliers in MOBA games winner prediction,” dalam Procedia Computer Science, Okt 2021, hlm. 1973–1981. doi: 10.1016/j.procs.2021.08.203.

[12] A. P. Putra dan P. N. Andono, “Win Probability of Heroes in Mobile Legends MPL ID S12 Competitions Using Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 8, no. 1, hlm. 203–210, Jan 2024, doi: 10.30865/mib.v8i1.7185.

[13] IBM, “Apa Itu Random Forest? | IBM,” IBM. Diakses: 7 Agustus 2025. [Daring]. Tersedia pada: https://www.ibm.com/id-id/think/topics/random-forest

[14] G. A. B. Suryanegara, A. Adiwijaya, dan M. D. Purbolaksono, “Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, hlm. 114–122, Feb 2021, doi: 10.29207/resti.v5i1.2880.

[15] D. Kurnia, M. I. Mazdadi, D. Kartini, R. A. Nugroho, dan F. Abadi, “Seleksi Fitur dengan Particle Swarm Optimization pada Klasifikasi Penyakit Parkinson Menggunakan XGBoost,” JTIIK, vol. 10, no. 5, hlm. 1083–1094, Okt 2023, doi: 10.25126/jtiik.20231057252.

[16] J. Lee dan N. Kim, “Development of Machine Learning-Based Indicators for Predicting Comeback Victories Using the Bounty Mechanism in MOBA Games,” Electronics, vol. 14, no. 7, hlm. 1445, Apr 2025, doi: 10.3390/electronics14071445.

[17] L. Hakim, A. Sobri, L. Sunardi, dan D. Nurdiansyah, “Prediksi penyakit jantung berbasis mesin learning dengan menggunakan metode k-nn,” vol. 07, no. 02, hlm. 14–20, Sep 2024, doi: 10.32502/digital.v7i2.9429.

[18] K. Kristiawan dan A. Widjaja, “Perbandingan Algoritma Machine Learning dalam Menilai Sebuah Lokasi Toko Ritel,” JuTISI, vol. 7, no. 1, Apr 2021, doi: 10.28932/jutisi.v7i1.3182.

[19] R. Harahap, M. Irpan, M. A. Dinata, dan L. Efrizoni, “Perbandingan Algoritma Random Forest Dan Xgboost Untuk Klasifikasi Penyakit Paru-Paru Berdasarkan Data Demografi Pasien,” Jurnal Ilmiah Betrik, vol. 15, no. 02, hlm. 130–141, Agu 2024.

[20] A. M. Musolf, E. R. Holzinger, J. D. Malley, dan J. E. Bailey-Wilson, “What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics,” Hum Genet, vol. 141, no. 9, hlm. 1515–1528, Sep 2022, doi: 10.1007/s00439-021-02402-z.

[21] R. Chinicz, “Practical Machine Learning with LoL: a Simple Predictive Use-Case with Data Collection, Learning…,” Medium. Diakses: 5 Oktober 2025. [Daring]. Tersedia pada: https://levelup.gitconnected.com/practical-machine-learning-with-lol-a-simple-predictive-use-case-with-data-collection-learning-c2b6e621df66

Downloads

Published

2025-12-17

How to Cite

[1]
D. Fadli Firmansyah, A. Prayogo Kuncoro, and R. Riyanto, “Match Outcome Prediction in Draft Pick and In-game Phases of MSC 2025 Mobile Legends using Random Forest and XGBoost”, JAIC, vol. 9, no. 6, pp. 3892–3903, Dec. 2025.

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.