Prediction of Nile Tilapia (Oreochromis niloticus) Harvest Yield in Brackishwater Pond Aquaculture Using XGBoost

Authors

  • Salamet Nur Himawan Politeknik Negeri Indramayu
  • Arif Wisnu Politeknik Negeri Indramayu
  • Nur Budi Nugraha Politeknik Negeri Indramayu

DOI:

https://doi.org/10.30871/jaic.v10i1.11378

Keywords:

Nile Tilapia, Brackishwater Ponds, Random Forest, Support Vector Machine, XGBoost

Abstract

Nile tilapia aquaculture is one of the aquaculture subsectors with significant development potential. However, the productivity of Nile tilapia cultured in brackishwater ponds is often constrained by variability in technical factors such as the number of fingerlings stocked, pond area, stocking density, land status, planting season, and feed quantity. To address these challenges, a predictive model based on machine learning was developed. Data were collected through field observations and interviews with Nile tilapia farmers in Wanantara, Sindang, Indramayu. The data were then processed using label encoding and normalization techniques. The dataset was divided into 80% for training and 20% for testing. XGBoost, Random Forest, and Support Vector Regression algorithms were trained using hyperparameter tuning and five-fold cross-validation, and evaluated using RMSE and R² metrics. The results show that XGBoost achieved the best performance (R² = 0.9798 and RMSE = 442.05 kg), followed by Random Forest (R² = 0.955 and RMSE = 679.742 kg) and SVR (R² = 0.888 and RMSE = 1065.367 kg).

Downloads

Download data is not yet available.

References

[1] K. Raje, “Tilapia Market Report 2025 (Global Edition),” Jul. 2025.

[2] S. E. Matondang, “Perbandingan Kadar Protein Ikan Air Tawar Dan Ikan Air Laut,” LAVOISIER: Chemistry Education Journal, vol. 1, no. 1, pp. 9–16, Jul. 2022, doi: 10.24952/lavoisier.v1i1.5723.

[3] R. Aziz and E. Barades, “Adaptation Of Tilapia Juvenile (Oreochromis niloticus) On Different Salinity Increases,” Jurnal Perikanan Unram, vol. 11, no. 2, pp. 251–258, Nov. 2021, doi: 10.29303/jp.v11i2.262.

[4] K. Haga Mendrofa and E. Krisdila Zebua, “Analisis Faktor-Faktor yang Mempengaruhi Produktivitas Budidaya Ikan Nila di Indonesia : Studi Literatur,” Ilmu Kedokteran Hewan, vol. 3, no. 1, 2025, doi: 10.62951/zoologi.v3i1.104.

[5] R. R. Lamangkaraka, Mulis, Y. Koniyo, and M. Alvionita, “Analisis Kualitas Air Pada Sistem Budidaya Ikan Nila (Oreocromis nilotius) di Balai Benih Ikan Andalas, Kota Gorontalo,” Jurnal Ilmiah Perikanan dan Kelautan, vol. 11, no. 2, 2024.

[6] D. Azhari and A. M. Tomasoa, “Kajian Kualitas Air Dan Pertumbuhan Ikan Nila (Oreochromis niloticus) Yang Dibudidayakan Dengan Sistem Akuaponik,” Jurnal Akuatika Indonesia, vol. 3, no. 2, p. 84, Sep. 2018.

[7] R Akhmad Akbar Trinanda Putra, Emma Yuliani, and Sri Wahyuni, “Pengaruh Kualitas Air Untuk Pertumbuhan Budidaya Ikan Nila (Oreochromis Niloticus) Di Kecamatan Glenmore Kabupaten Banyuwangi,” Jurnal Teknologi dan Rekayasa Sumber Daya Air, vol. 5, no. 1, pp. 498–507, Jan. 2025, doi: 10.21776/ub.jtresda.2025.005.01.047.

[8] M. Arzad and A. Fahrizal, “Pengaruh Padat Tebar Terhadap Pertumbuhan Ikan Nila (Oreochromis niloticus) Dalam Sistem Akuaponik,” 2019.

[9] A. Kurniaji, Y. Yunarty, A. Anton, Z. Usman, E. Wahid, and K. Rama, “Pertumbuhan dan konsumsi pakan ikan nila (Oreochromis niloticus) yang dipelihara dengan sistem bioflok,” Sains Akuakultur Tropis, vol. 5, no. 2, pp. 197–203, Oct. 2021, doi: 10.14710/sat.v5i2.11824.

[10] N. F. Bulontio, S. R. Kalaka, and S. Nursinar, “Pemberian Pakan yang Berbeda Terhadap Pertumbuhan Benih Ikan Nila (Oreochromis niloticus),” Jurnal Ilmiah Perikanan dan Kelautan, vol. 12, no. 4, Dec. 2024.

[11] I. Fadillah, T. S. Ramadhani, and Z. A. Tiftazani, “Pendugaan Suhu Dan Ph Budidaya Ikan Air Tawar Menggunakan Support Vector Regression (SVR),” vol. 11, no. 2, 2023.

[12] C. M. Suprapto, W. S. J. Saputra, and F. P. Aditiawan, “Prediksi Hasil Panen Budidaya Ikan Lele Dari Mitra Panen Menggunakan Algoritma Support Vector Regression,” Jurnal Komputer dan Informatika, vol. 12, no. 2, pp. 158–165, Oct. 2024, doi: 10.35508/jicon.v12i2.13187.

[13] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, no. null, pp. 2825–2830, Nov. 2011.

[14] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA: ACM, Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785.

[15] L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324.

[16] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat Comput, vol. 14, no. 3, pp. 199–222, Aug. 2004, doi: 10.1023/B:STCO.0000035301.49549.88.

Downloads

Published

2026-02-04

How to Cite

[1]
S. N. Himawan, A. Wisnu, and N. B. Nugraha, “Prediction of Nile Tilapia (Oreochromis niloticus) Harvest Yield in Brackishwater Pond Aquaculture Using XGBoost”, JAIC, vol. 10, no. 1, pp. 599–604, Feb. 2026.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.