Prediction of Nile Tilapia (Oreochromis niloticus) Harvest Yield in Brackishwater Pond Aquaculture Using XGBoost
DOI:
https://doi.org/10.30871/jaic.v10i1.11378Keywords:
Nile Tilapia, Brackishwater Ponds, Random Forest, Support Vector Machine, XGBoostAbstract
Nile tilapia aquaculture is one of the aquaculture subsectors with significant development potential. However, the productivity of Nile tilapia cultured in brackishwater ponds is often constrained by variability in technical factors such as the number of fingerlings stocked, pond area, stocking density, land status, planting season, and feed quantity. To address these challenges, a predictive model based on machine learning was developed. Data were collected through field observations and interviews with Nile tilapia farmers in Wanantara, Sindang, Indramayu. The data were then processed using label encoding and normalization techniques. The dataset was divided into 80% for training and 20% for testing. XGBoost, Random Forest, and Support Vector Regression algorithms were trained using hyperparameter tuning and five-fold cross-validation, and evaluated using RMSE and R² metrics. The results show that XGBoost achieved the best performance (R² = 0.9798 and RMSE = 442.05 kg), followed by Random Forest (R² = 0.955 and RMSE = 679.742 kg) and SVR (R² = 0.888 and RMSE = 1065.367 kg).
Downloads
References
[1] K. Raje, “Tilapia Market Report 2025 (Global Edition),” Jul. 2025.
[2] S. E. Matondang, “Perbandingan Kadar Protein Ikan Air Tawar Dan Ikan Air Laut,” LAVOISIER: Chemistry Education Journal, vol. 1, no. 1, pp. 9–16, Jul. 2022, doi: 10.24952/lavoisier.v1i1.5723.
[3] R. Aziz and E. Barades, “Adaptation Of Tilapia Juvenile (Oreochromis niloticus) On Different Salinity Increases,” Jurnal Perikanan Unram, vol. 11, no. 2, pp. 251–258, Nov. 2021, doi: 10.29303/jp.v11i2.262.
[4] K. Haga Mendrofa and E. Krisdila Zebua, “Analisis Faktor-Faktor yang Mempengaruhi Produktivitas Budidaya Ikan Nila di Indonesia : Studi Literatur,” Ilmu Kedokteran Hewan, vol. 3, no. 1, 2025, doi: 10.62951/zoologi.v3i1.104.
[5] R. R. Lamangkaraka, Mulis, Y. Koniyo, and M. Alvionita, “Analisis Kualitas Air Pada Sistem Budidaya Ikan Nila (Oreocromis nilotius) di Balai Benih Ikan Andalas, Kota Gorontalo,” Jurnal Ilmiah Perikanan dan Kelautan, vol. 11, no. 2, 2024.
[6] D. Azhari and A. M. Tomasoa, “Kajian Kualitas Air Dan Pertumbuhan Ikan Nila (Oreochromis niloticus) Yang Dibudidayakan Dengan Sistem Akuaponik,” Jurnal Akuatika Indonesia, vol. 3, no. 2, p. 84, Sep. 2018.
[7] R Akhmad Akbar Trinanda Putra, Emma Yuliani, and Sri Wahyuni, “Pengaruh Kualitas Air Untuk Pertumbuhan Budidaya Ikan Nila (Oreochromis Niloticus) Di Kecamatan Glenmore Kabupaten Banyuwangi,” Jurnal Teknologi dan Rekayasa Sumber Daya Air, vol. 5, no. 1, pp. 498–507, Jan. 2025, doi: 10.21776/ub.jtresda.2025.005.01.047.
[8] M. Arzad and A. Fahrizal, “Pengaruh Padat Tebar Terhadap Pertumbuhan Ikan Nila (Oreochromis niloticus) Dalam Sistem Akuaponik,” 2019.
[9] A. Kurniaji, Y. Yunarty, A. Anton, Z. Usman, E. Wahid, and K. Rama, “Pertumbuhan dan konsumsi pakan ikan nila (Oreochromis niloticus) yang dipelihara dengan sistem bioflok,” Sains Akuakultur Tropis, vol. 5, no. 2, pp. 197–203, Oct. 2021, doi: 10.14710/sat.v5i2.11824.
[10] N. F. Bulontio, S. R. Kalaka, and S. Nursinar, “Pemberian Pakan yang Berbeda Terhadap Pertumbuhan Benih Ikan Nila (Oreochromis niloticus),” Jurnal Ilmiah Perikanan dan Kelautan, vol. 12, no. 4, Dec. 2024.
[11] I. Fadillah, T. S. Ramadhani, and Z. A. Tiftazani, “Pendugaan Suhu Dan Ph Budidaya Ikan Air Tawar Menggunakan Support Vector Regression (SVR),” vol. 11, no. 2, 2023.
[12] C. M. Suprapto, W. S. J. Saputra, and F. P. Aditiawan, “Prediksi Hasil Panen Budidaya Ikan Lele Dari Mitra Panen Menggunakan Algoritma Support Vector Regression,” Jurnal Komputer dan Informatika, vol. 12, no. 2, pp. 158–165, Oct. 2024, doi: 10.35508/jicon.v12i2.13187.
[13] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, no. null, pp. 2825–2830, Nov. 2011.
[14] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA: ACM, Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785.
[15] L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324.
[16] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat Comput, vol. 14, no. 3, pp. 199–222, Aug. 2004, doi: 10.1023/B:STCO.0000035301.49549.88.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Salamet Nur Himawan, Arif Wisnu, Nur Budi Nugraha

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








