Indobert-Based Sentiment Analysis of Political Discourse on Platform X: The Case Of Prabowo-Gibran Administration
DOI:
https://doi.org/10.30871/jaic.v10i1.11586Keywords:
2024 Election, IndoBERT, Platform X, Prabowo-Gibran, Sentiment AnalysisAbstract
The 2024 Indonesian presidential election inaugurated the Prabowo Subianto–Gibran Rakabuming Raka administration, whose early performance has been widely discussed on digital social networks, particularly X (Twitter). This study evaluates public sentiment toward the administration's performance up to June 30, 2025 using an IndoBERT-based text classification approach. A total of 2,612 public posts were collected via web scraping and processed through text preprocessing steps (noise removal, slang correction, normalization, and lemmatization). The data were labeled into three sentiment classes (positive, neutral, and negative) and split into training, validation, and test sets (2,092 / 418 / 105). The fine-tuned IndoBERT model achieved an overall test accuracy of 0.78, with the highest F1-score on the negative class (0.82), followed by neutral (0.76) and positive (0.75). The confusion matrix indicates that neutral posts are more frequently confused with positive posts, suggesting that neutral sentiment remains harder to separate in politically nuanced and noisy social-media text. This study also compares IndoBERT with a traditional baseline (TF-IDF + SVM using polynomial kernel). Results show that IndoBERT (78% accuracy) significantly outperforms SVM (72.19%), particularly in detecting negative sentiment (F1: 0.82 vs 0.72), demonstrating superior contextual understanding of politically nuanced text. This work also highlights methodological and ethical considerations for political opinion mining, including representativeness limits of X users and privacy-preserving handling of public posts. Future work should expand the dataset, address class imbalance, and explore additional transformer-based architectures to strengthen generalizability and benchmarking.
Downloads
References
[1] S. K. R. Indonesia, “Prabowo Subianto dan Gibran Rakabuming Raka Resmi Dilantik Sebagai Presiden dan Wakil Presiden RI,” 2024.
[2] L. F. L. Siregar, “Assessing Prabowo-Gibran’s Victory: An Exit-Poll Aftermath Analysis of the 2024 Presidential Election,” Fulcrum, 2024, [Online]. Available: https://fulcrum.sg
[3] C. T. C. W. Lim, “Indonesian president Prabowo’s first 100 days marked by u-turns, missteps … and sky-high popularity,” Guard., 2025, [Online]. Available: https://www.theguardian.com
[4] T. C. T. B. Hu, “Prabowo’s tightrope walk to 2029,” East Asia Forum, 2025, [Online]. Available: https://eastasiaforum.org
[5] P. Sayarizki, Hasmawati, and H. Nurrahmi, “Implementation of IndoBERT for Sentiment Analysis of Indonesian Presidential Candidates,” Indones. J. Comput., vol. 9, no. 2, pp. 61–72, 2024, doi: 10.34818/INDOJC.2024.9.2.934.
[6] A. I. Kamil, O. N. Pratiwi, and D. Witarsyah, “Analisis Sentimen dan Pemodelan Topik terhadap Aplikasi Pembelajaran Online pada Platform Google Play,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 10, no. 2, pp. 836–849, 2025, doi: 10.29100/jipi.v10i2.6023.
[7] C. Jayadianti and others, “Sentiment analysis of Indonesian reviews using fine-tuning IndoBERT and R-CNN,” Ilk. J. Ilm., vol. 15, no. 1, pp. 1–10, 2023, [Online]. Available: https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1505
[8] F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoBERT: Pre-training for Indonesian language understanding,” in Proceedings of the 28th International Conference on Computational Linguistics, 2020, pp. 757–770.
[9] H. Imaduddin and others, “Sentiment Analysis in Indonesian Healthcare Applications using IndoBERT Approach,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 8, pp. 13–22, 2023, doi: 10.14569/IJACSA.2023.0140813.
[10] A. Romadhony and others, “Sentiment Analysis on a Large Indonesian Product Review Dataset,” J. Inf. Syst. Eng. Bus. Intell., vol. 10, no. 1, pp. 167–178, 2024, doi: 10.20473/jisebi.10.1.167-178.
[11] Habibi and others, “Analysis of Indonesia Politics Polarization before 2019 President Election Using Sentiment Analysis and Social Network Analysis,” in 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 2019, pp. 40–45. doi: 10.5815/ijmecs.2019.11.04.
[12] M. N. Fatanti, “Twitter dan Masa Depan Politik Indonesia: Analisis Perkembangan Komunikasi Politik Lokal melalui Internet,” J. Ilmu Pengetah. dan Teknol. Komun., vol. 16, no. 1, pp. 17–30, 2014.
[13] A. S. Cahyono, “Pengaruh Media Sosial terhadap Perubahan Sosial Masyarakat di Indonesia,” Publiciana, vol. 9, no. 1, pp. 140–157, 2016, doi: 10.36563/publiciana.v9i1.79.
[14] T. Baharuddin, Z. Qodir, H. Jubba, and A. Nurmandi, “Prediction of Indonesian presidential candidates in 2024 using sentiment analysis and text search on Twitter,” Int. J. Commun. Soc., vol. 4, no. 2, pp. 204–213, 2022, doi: 10.31763/ijcs.v4i2.512.
[15] K. Diantoro, A. Soderi, A. Rohman, and A. T. Sitorus, “Sentiment Analysis of Public Opinion on the 2024 Presidential Election in Indonesia Using Twitter Data with the K-NN Method,” Digit. J. Comput. Sci. Appl., vol. 1, no. 1, pp. 1–10, 2023, doi: 10.61978/digitus.v1i1.27.
[16] D. I. Putri, A. N. Alfian, M. Y. Putra, and P. D. Mulyo, “IndoBERT Model Analysis: Twitter Sentiments on Indonesia’s 2024 Presidential Election,” J. Appl. Informatics Comput., 2024, doi: 10.30871/jaic.v8i1.7440.
[17] H. Ahmadian and others, “Hybrid Models for Emotion Classification and Sentiment Analysis in Indonesian Language,” Appl. Comput. Intell. Soft Comput., 2024, doi: 10.1155/2024/2826773.
[18] F. Nurrizky and S. Dwiasnati, “Comparison of Naive Bayes and Support Vector Machine (SVM) Algorithms Regarding The Popularity of Presidential Candidates In The Upcoming 2024 Presidential Election,” Comput. Eng. Appl. J., vol. 13, no. 1, pp. 17–28, 2024, doi: 10.18495/comengapp.v13i1.459.
[19] D. S. Nugroho and others, “Analisis Sentimen Dugaan Pelanggaran Pemilu 2024 Berdasarkan Tweet Menggunakan Algoritma Naïve Bayes Classifier,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 1169–1176, 2024, doi: 10.57152/malcom.v4i3.1496.
[20] F. A. D. Aryanti, A. Luthfiarta, and D. A. I. Soeroso, “Aspect-Based Sentiment Analysis with LDA and IndoBERT Algorithm on Mental Health App: Riliv,” J. Appl. Informatics Comput., 2025, doi: 10.30871/jaic.v9i2.8958.
[21] P. Subarkah and others, “Indonesian Police in the Twitterverse: A Sentiment Analysis Perspectives,” in 2023 IEEE 7th International Conference on Information Technology, Information Systems and Electrical Engineering, 2023.
[22] L. Geni, E. Yulianti, and D. I. Sensuse, “Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using IndoBERT Language Models,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 10, no. 2, 2024.
[23] S. Hayuningtyas, “Penggunaan Twitter sebagai Media Pencitraan Politik (Studi Netnografi pada Akun Twitter @Gerindra),” 2024.
[24] R. Vindua and A. U. Zailani, “Analisis Sentimen Pemilu Indonesia Tahun 2024 dari Media Sosial Twitter Menggunakan Python,” JURIKOM (Jurnal Ris. Komputer), 2024.
[25] M. Ahmad, S. Aftab, I. Bashir, and M. S. Hameed, “Sentiment analysis of Indonesian datasets based on a hybrid deep-learning strategy,” J. Big Data, vol. 10, no. 95, 2023, doi: 10.1186/s40537-023-00782-9.
[26] K. S. Nugroho, “Dasar Text Preprocessing dengan Python,” 2021.
[27] DQLab, “Tahapan Text Preprocessing dalam Teknik Pengolahan Data,” 2021.
[28] M. Yunus, “Basic Text Preprocessing menggunakan NLTK,” 2021.
[29] W. Muliady and H. Widiputra, “Preprocessing of Slang Words for Sentiment Analysis on Public Perceptions in Twitter,” in Uncertainty Reasoning and Knowledge Engineering, IntechOpen, 2012. doi: 10.1109/urke.2012.6319524.
[30] B. Gunawan and others, “Text Preprocessing for Optimal Accuracy in Indonesian Sentiment Analysis Using a Deep Learning Model with Word Embedding,” 2021.
[31] Learn Himpasikom, “Teknik NLP: Mengenal Text Pre-Processing,” 2022.
[32] NLTK Project, “Natural Language Toolkit Documentation.”
[33] K. S. Nugroho, “Text Preprocessing Techniques for Indonesian Language,” in Python Data Science Handbook, 2021.
[34] M. Adriani, J. Asian, B. Nazief, S. M. M. Tahaghoghi, and H. E. Williams, “Stemming Indonesian: A confix-stripping approach,” ACM Trans. Asian Lang. Inf. Process., vol. 6, no. 4, pp. 1–33, 2007.
[35] F. Z. Tala, “A Study of Stemming Effect on Information Retrieval in Bahasa Indonesia,” University of Amsterdam, 1999.
[36] H. Utama, E. Daniati, and A. Masruro, “Weak supervision dengan pendekatan labeling function untuk analisis sentimen pada Twitter,” Indones. J. Comput. Sci. Res., vol. 3, no. 1, pp. 49–57, 2024, doi: 10.59095/ijcsr.v3i1.93.
[37] X. Liu, Y. Zhang, H. Wang, L. Chen, M. Li, and Q. Zhou, “A structured sentiment analysis dataset based on public comments from various domains,” Sci. Data, vol. 11, p. Article 234, 2024, doi: 10.1038/s41597-024-03067-8.
[38] CloudFactory, “Dataset Split in Machine Learning,” 2024.
[39] H. C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, and I. Nogues, “Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1285–1298, 2016.
[40] Y. Mao, Q. Liu, and Y. Zhang, “Sentiment analysis methods, applications, and challenges: A systematic literature review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 4, p. 102048, 2024.
[41] A. Gholamy, V. Kreinovich, and O. Kosheleva, “Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation,” 2018.
[42] T. D. Purnomo and J. Sutopo, “Comparison of Pre-trained BERT-based Transformer Models for Regional Language Text Sentiment Analysis in Indonesia,” Int. J. Sci. Technol., vol. 3, no. 3, pp. 11–21, 2024, doi: 10.56127/ijst.v3i3.1739.
[43] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” arXiv Prepr. arXiv1810.04805, 2018, doi: 10.48550/arXiv.1810.04805.
[44] H. M. Ramdhan, M. D. Purbolaksono, and Bunyamin, “Sentiment Analysis of Beauty Product Reviews Using the IndoBERT Method and Naive Bayes Classification,” in Proceedings of the 2024 12th International Conference on Information and Communication Technology (ICoICT), 2024, pp. 397–404. doi: 10.1109/ICoICT61617.2024.10698198.
[45] S. Collins, “How to Fine Tune BERT for Real Time Sentiment Analysis,” 2023.
[46] B. Wilie and others, “IndoNLU: Benchmark and resources for evaluating Indonesian natural language understanding,” in Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, 2020, pp. 843–857.
[47] M. N. Farizi, “Implementation of BiLSTM and IndoBERT for Sentiment Analysis of TikTok Reviews,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 10, no. 4, pp. 2332–2344, 2024, doi: 10.29100/jipi.v10i4.5815.
[48] S. Azhari, N. Rahaningsih, R. D. Dana, and Mulyawan, “Peningkatan akurasi analisis sentimen pada aplikasi Loklok dengan metode Naïve Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 1, pp. 1132–1146, 2025, doi: 10.23960/jitet.v13i1.5848.
[49] L. Nursinggah, Ruuhwan, and T. Mufizar, “Analisis sentimen pengguna aplikasi X terhadap program makan siang gratis dengan metode Naïve Bayes classifier,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, pp. 1615–1622, 2024, doi: 10.23960/jitet.v12i3.4336.
[50] A. F. Sadeli and I. I. Lawanda, “Recall, Precision, and F-Measure for Evaluating Information Retrieval System in Electronic Document Management Systems (EDMS),” Khizanah al-Hikmah J. Ilmu Perpustakaan, Informasi, dan Kearsipan, vol. 11, no. 2, 2023, doi: 10.24252/kah.v11i2a8.
[51] M. D. Al Fahreza, A. Luthfiarta, M. Rafid, and M. Indrawan, “Analisis sentimen: Pengaruh jam kerja terhadap kesehatan mental generasi Z,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 16–25, 2024, doi: 10.52158/jacost.v5i1.715.
[52] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186.
[53] Rosenthal, S., Farra, N., & Nakov, P. (2017). SemEval-2017 Task 4: Sentiment analysis in Twitter. Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 502–518.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Vanesa Estetika Sidauruk, Wise Herowati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








