Analisis Efektivitas Papan Reklame Berbasis IoT dengan Metode Faster R-CNN
DOI:
https://doi.org/10.30871/jaee.v9i1.9473Keywords:
Deep Learning, Faster R-CNN, Iklan, Papan ReklameAbstract
Papan reklame merupakan media untuk mempublikasikan produk atau jasa, namun efektivitasnya sulit diukur karena tidak diketahui jumlah orang yang melihatnya. Oleh karena itu, penelitian ini mengembangkan sistem berbasis metode Faster R-CNN untuk mendeteksi jumlah viewers papan reklame. Sistem ini bertujuan membantu pemakai jasa iklan dalam menilai efektivitas pemasangan iklan serta memberi nilai tambah bagi penyedia jasa dengan menyediakan data jumlah viewers sebagai daya tarik layanan. Hasil pengujian menunjukkan sistem mampu mendeteksi wajah dengan akurasi 56,74%, motor 76,47%, dan mobil 93,94%. Beberapa faktor yang mempengaruhi akurasi deteksi antara lain pencahayaan, jarak, resolusi kamera, serta kesesuaian dataset dengan lingkungan implementasi. Dengan adanya sistem ini, pemakai jasa dapat menentukan lokasi pemasangan iklan yang lebih strategis berdasarkan data real-time, sementara penyedia jasa dapat meningkatkan daya tarik layanan pemasangan iklan dengan data jumlah viewers sebagai nilai jual. Teknologi ini diharapkan mampu meningkatkan efektivitas pemasaran melalui papan reklame secara lebih akurat, efisien, dan terukur.
Downloads
References
[1] A. A. Wibowo and P. Ardhianto, “Iconology Analysis in Advertising Design, Case Study Go-Jek Billboard Advertising: Series ‘Mager Tanpa Laper’ in Yogyakarta-Indonesia,” Int. J. Vis. Perform. Arts, vol. 2, no. 1, pp. 8–14, 2020, doi: 10.31763/viperarts.v2i1.57.
[2] D. Hendarsyah, “Pemasaran digital dalam kewirausahaan,” J. Ilm. Ekon. Kita, vol. 9, no. 1, pp. 25–43, 2020.
[3] I. R. Kusumasari, A. D. Mahendrawan, and Y. B. Kusuma, “LIVE STREAMING TO IMPULSE BUYING SHOPEE USERS IN,” Journal, Indones. Interdiscip. Econ. Sharia, vol. 8, no. 2, pp. 3268–3279, 2025.
[4] L. Wang, Z. Yu, D. Yang, H. Ma, and H. Sheng, “Efficiently targeted billboard advertising using crowdsensing vehicle trajectory data,” IEEE Trans. Ind. Informatics, vol. 16, no. 2, pp. 1058–1066, 2020, doi: 10.1109/TII.2019.2891258.
[5] M. Arsal, B. Agus Wardijono, and D. Anggraini, “Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 1, pp. 55–63, 2020, doi: 10.25077/teknosi.v6i1.2020.55-63.
[6] R. H. Alfikri, M. S. Utomo, H. Februariyanti, and E. Nurwahyudi, “Pembangunan Aplikasi Penerjemah Bahasa Isyarat Dengan Metode Cnn Berbasis Android,” J. Teknoinfo, vol. 16, no. 2, p. 183, 2022, doi: 10.33365/jti.v16i2.1752.
[7] Ekojono, Faisal Rahutomo, and D. N. Sari, “Implementasi Library Deep Learning Keras pada Sistem Ujian Essay Online,” J. Inform. Polinema, vol. 6, no. 2, pp. 73–79, 2020, doi: 10.33795/jip.v6i2.303.
[8] A. Pradana et al., “Design and development of an over-dimension estimation device using the yolo algorithm and opencv,” vol. 5, no. 2, pp. 189–202, 2024.
[9] D. Gunawan et al., “Implementasi MERN Stack pada Pengembangan Sistem Penerimaan Peserta Didik Baru,” Swabumi, vol. 11, no. 2, pp. 102–110, 2023, doi: 10.31294/swabumi.v11i2.15965.
[10] M. Sanjaya and P. R. N. Saputra, “Pemanfaatan Nextjs Dan Mongodb Dalam Sistem Informasi Web Manajemen Data Beras Pada Ud Sri Utami,” Inf. Syst. Educ. Prof. J. Inf. Syst., vol. 8, no. 1, p. 25, 2023, doi: 10.51211/isbi.v8i1.2414.
[11] M. M. Eyada, W. Saber, M. M. El Genidy, and F. Amer, “Performance Evaluation of IoT Data Management Using MongoDB Versus MySQL Databases in Different Cloud Environments,” IEEE Access, vol. 8, pp. 110656–110668, 2020, doi: 10.1109/ACCESS.2020.3002164.
[12] D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, “Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer,” Procedia Comput. Sci., vol. 179, no. 2019, pp. 423–431, 2021, doi: 10.1016/j.procs.2021.01.025.
[13] S. Ali, A. Jalal, M. H. Alatiyyah, K. Alnowaiser, and J. Park, “Vehicle Detection and Tracking in UAV Imagery via YOLOv3 and Kalman Filter Vehicle Detection and Tracking in UAV Imagery via YOLOv3 and Kalman Filter,” Comput. Mater. Contin., vol. 76, no. 1, pp. 1250–1265, 2023, doi: 10.32604/cmc.2023.038114.
[14] A. N. Pramudhita, P. P. Arhandi, and F. B. Sukmadewi, “Perancangan User Interface Sistem Informasi Alumni Menggunakan Metode Webuse Dan User Centered Design,” J. Teknol. Inf. dan Terap., vol. 9, no. 1, pp. 29–36, 2022, doi: 10.25047/jtit.v9i1.266.
[15] I. Abadi and A. Ginanjar, “Implementasi Analisis Sistem Online Kawasan Keselamatan Operasinal Penerbangan Menggunakan Web Service Berbasis NodeJS dan Android,” J. ICT Inf. Commun. Technol., vol. 20, no. 1, pp. 1–8, 2021, doi: 10.36054/jict-ikmi.v20i1.148.
Downloads
Published
Versions
- 2025-06-28 (2)
- 2025-06-28 (1)
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Open Access Policy
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself.










