Implementasi Algoritma Q Learning Pada Robot Line Follower
Abstract
Penggunaan metode algoritma Q learning pada robot mampu melakukan perbaikan tanpa harus memperbaharui aturan dari luar karena sifatnya off policy (dapat mengikuti aturan apapun untuk menghasilkan solusi optimal). Dalam sistem kerjanya, robot melakukan proses pembelajaran terhadap garis lintasan yang dilaluinya sehingga didapatkan suatu nilai untuk aksi yang telah dilakukan pada setiap state yang terdeteksi. Tujuan penelitian ini adalah membuat robot bergerak berdasarkan nilai Q function tertinggi yang dihasilkan oleh algoritma Q learning. Berdasarkan hasil pada pengujian penerapan algoritma Q learning pada robot line follower, persentase keberhasilan yang didapatkan adalah sebesar 100% untuk percobaan pertama, 66,67% untuk percobaan kedua, 100% untuk percobaan ketiga, 66,67% untuk percobaan keempat, dan 100% untuk percobaan kelima sehingga rata – rata keberhasilan sebesar 86,67%.
Downloads
References
A.S. Romadhon and M. Fuad, “Perancangan Sistem Kontrol Gerakan Pada Robot Line Tracer,” Ilm. Mikrotek, vol. 1, no. 1, pp. 53–58, 2013.
David, “Kendali Logika Fuzzy Pada Robot Line Follower Line Follower Robot with Fuzzy Logic Control,” Citec J., vol. 3, no. 1, pp. 15–25, 2016.
A. Wajiansyah, S. Supriadi, S. Nur, and A. B. Wicaksono P, “Implementasi Fuzzy Logic Pada Robot Line Follower,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, p. 395, 2018, doi: 10.25126/jtiik.201854747.
M. Santo Gitakarma, “Perancangan Behavior-Based Robot Dengan Algoritma Fuzzy Q-Learning (Fql) Pada Sistem Navigasi Robot Otonom Beroda Dalam Medan Yang Tidak Terstruktur,” JST (Jurnal Sains dan Teknol., vol. 2, no. 1, pp. 139–150, 2013, doi: 10.23887/jst-undiksha.v1i1.1419.
V. R. Cruz-Álvarez, E. Hidalgo-Peña, and H.-G. Acosta-Mesa, “A line follower robot implementation using Lego’s Mindstorms Kit and Q-Learning,” Acta Univ., vol. 22, pp. 113–118, 2012, doi: 10.15174/au.2012.350.
S. Arifin, A. Tandy Hermawan, and Y. Kristian, “Pencarian Rute Line Follower Mobile Robot Pada Maze Dengan Metode Q Learning,” J. Otomasi Kontrol dan Instrumentasi, vol. 8, no. 1, p. 55, 2016, doi: 10.5614/joki.2016.8.1.5.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Open Access Policy
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself.