Pengklasifikasian Warna dan Bentuk Produk Menggunakan Kamera ELP- USB8MP02G-MFV dengan Berbasis YOLOV7

Authors

  • Diono Diono Politeknik Negeri Batam
  • Muhammad Syafei Gozali Politeknik Negeri Batam
  • Yohannes Ridho Soru Politeknik Negeri Batam

DOI:

https://doi.org/10.30871/ji.v17i1.9266

Keywords:

Raspberry Pi 4b, ELP-USB8MP02G-MFV, object detection, YOLOv7

Abstract

The development of artificial intelligence technology allows the system to detect various objects. In the research on the classification of color and shape of products using the ELP-USB8MP02G-MFV camera based on YOLOV7, it aims to modify the conveyor on the molding machine. Because the conveyor only has the function of distributing goods from the molding machine to the bin and the length of time used to wait for the bin to be full is the reason why this conveyor is modified. Modifications are made by adding a camera that has been connected to the Raspberry Pi 4B on the conveyor, the camera functions to take pictures of passing product objects then the image is detected by the system on the Raspberry Pi 4B so that this conveyor machine can classify the objects produced by the molding machine. The system detects objects using the YOLOv7 algorithm. This study was carried out with three tests, namely object model detection testing, color detection testing and program and relay output testing where 98.11% was for object model detection testing, 97.37% for color detection and 100% for program and relay output testing.  The results of this research will contribute to the development of object detection, especially product object detection and the results of molding machines.

Downloads

Download data is not yet available.

References

[1] R. Zubair, E. Moralista, and N. Isniarno, “Kajian Korosi Struktur Conveyor B pada Tambang Batubara PT GHI di Kabupaten Tapin, Provinsi Kalimantan Selatan,” Bandung Conf. Ser. Min. Eng., vol. 2, no. 1, Jan. 2022, doi: 10.29313/bcsme.v2i1.1570.

[2] H. E. Putra, T. Hidayat, and A. Z. Hudaya, “PERANCANGAN TUBULAR CONVEYOR UNTUK MEMINDAHKAN BIJI PADI,” J. CRANKSHAFT, vol. 4, no. 2, 2021.

[3] F. Ulger and S. E. Yuksel, “A Standalone Open-Source System for Optical Inspection of Printed Circuit Boards,” Signal Process. - Algorithms, Archit. Arrange. Appl. Conf. Proceedings, SPA, vol. 2019-Septe, pp. 105–110, 2019, doi: 10.23919/SPA.2019.8936659.

[4] R. Gelar Guntara, “Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 5, no. 1, pp. 55–60, Feb. 2023, doi: 10.47233/jteksis.v5i1.750.

[5] M. L. Nazilly, B. Rahmat, and E. Y. Puspaningrum, “IMPLEMENTASI ALGORITMA YOLO (YOU ONLY LOOK ONCE) UNTUK DETEKSI API 1.”

[6] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.” [Online]. Available: https://github.com/.

[7] C.-Y. Wang, H.-Y. M. Liao, and I.-H. Yeh, “Designing Network Design Strategies Through Gradient Path Analysis,” Nov. 2022, [Online]. Available: http://arxiv.org/abs/2211.04800.

[8] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” Apr. 2020, [Online]. Available: http://arxiv.org/abs/2004.10934.

[9] C. Li, M. Z. Zia, Q. H. Tran, X. Yu, G. D. Hager, and M. Chandraker, “Deep Supervision with Intermediate Concepts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 8, pp. 1828–1843, Aug. 2019, doi: 10.1109/TPAMI.2018.2863285.

[10] D. Gustina Penulis and Y. Yahya, “PENDETEKSI AIR BERSIH LAYAK DIMINUM BERBASIS PHYTON DENGAN RASPBERRY PI.”

[11] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).

"You Only Look Once: Unified, Real-Time Object Detection".

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020).

"YOLOv4: Optimal Speed and Accuracy of Object Detection".

arXiv preprint arXiv:2004.10934.

[13] Punn, N. S., & Agarwal, S. (2020). Retail product detection using YOLOv4 for automated checkout system. arXiv preprint arXiv:2007.08710.

[14] Zhang, K., Wang, T., Wang, Y., & Lin, Y. (2019). Deep learning-based product recognition in smart vending machines. In 2019 IEEE 5th International Conference on Computer and Communications (ICCC) (pp. 1519–1523). IEEE.

[15] Al-Zubaidi, S., Al-Bahadili, H., & Al-Rawajfeh, M. (2021). Real-time product detection and classification in supermarkets using YOLO. In 2021 12th International Conference on Information and Communication Systems (ICICS) (pp. 253–258). IEEE.

Downloads

Published

2025-04-30

Most read articles by the same author(s)