Passenger Density Prediction at the Airport Using LSTM and SARIMA: A Case Study at Radin Inten Airport, Lampung

Authors

  • Diaji Yugo Prasojo Institut Informatika dan Bisnis Darmajaya
  • Kurnia Muludi Institut Informatika dan Bisnis Darmajaya

DOI:

https://doi.org/10.30871/jaic.v9i4.9935

Keywords:

Passenger Density Prediction, SARIMA, LSTM, Random Forest, XGBoost, Time Series, Airport

Abstract

Passenger density prediction at airports is a critical aspect of operational planning and strategic decision-making. This study aims to develop a passenger count prediction model for Radin Inten Airport in Lampung using a combination of Seasonal AutoRegressive Integrated Moving Average (SARIMA) and Long Short-Term Memory (LSTM), and to compare it with Random Forest and XGBoost models. The dataset consists of daily passenger counts from January 2023 to December 2024. The research includes data exploration, preprocessing, separate modeling with SARIMA and LSTM, and their integration through a residual learning approach. Evaluation results show that SARIMA achieved the best performance in capturing seasonal patterns with a Mean Absolute Percentage Error (MAPE) of 3.81%, followed by Random Forest with 5.81% and XGBoost with 5.84%. The LSTM model performed less effectively with a MAPE of 6.81%. Although the SARIMA–LSTM combination is theoretically promising, it produced a worse result with a MAPE of 14.27% due to error accumulation in the residual learning stage. This study highlights that the choice of prediction model strongly depends on data characteristics and forecasting objectives, as well as the importance of multi-model integration to improve prediction accuracy in airport passenger density forecasting applications.

Downloads

Download data is not yet available.

References

[1] F. Febriana, Y. Salim, and H. Darwis, “Implementasi Analisis Volume Capacity Ratio Untuk Memprediksi Kepadatan Lalu Lintas Di Kota Makassar,” Bul. Sist. Inf. dan Teknol. Islam, vol. 3, no. 3, pp. 219–224, 2022, doi: 10.33096/busiti.v3i3.864.

[2] A. Mahfud Al, D. Kurniasari, Mustofa Usman, and P. Pesawat, “Peramalan Data Time Series Seasonal Menggunakan Metode Analisis Spektral,” J. Siger Mat., vol. 1, no. 1, pp. 10–15, 2020.

[3] D. C. W. Wu, L. Ji, K. He, and K. F. G. Tso, “Forecasting Tourist Daily Arrivals With A Hybrid Sarima–Lstm Approach,” J. Hosp. Tour. Res., vol. 45, no. 1, pp. 52–67, 2021, doi: 10.1177/1096348020934046.

[4] W. Gu, B. Guo, Z. Zhang, and H. Lu, “Civil Aviation Passenger Traffic Forecasting: Application and Comparative Study of the Seasonal Autoregressive Integrated Moving Average Model and Backpropagation Neural Network,” Sustain. , vol. 16, no. 10, 2024, doi: 10.3390/su16104110.

[5] D. Kurniasari, A. Dafa Salsabila, and M. Usman, “Enhancing Weather Forecasting in Bandar Lampung: A Hybrid SARIMA-LSTM Approach,” J. Teor. dan Apl. Mat., vol. 9, no. 1, p. 206, 2025, [Online]. Available: http://journal.ummat.ac.id/index.php/jtam

[6] Q. H. Do, S. K. Lo, J. F. Chen, C. L. Le, and L. H. Anh, “Forecasting air passenger demand: A comparison of LSTM and SARIMA,” J. Comput. Sci., vol. 16, no. 7, pp. 1063–1084, 2020, doi: 10.3844/JCSSP.2020.1063.1084.

[7] F. I. Durrah, Y. Yulia, T. P. Parhusip, and A. Rusyana, “Peramalan Jumlah Penumpang Pesawat Di Bandara Sultan Iskandar Muda Dengan Metode SARIMA (Seasonal Autoregressive Integrated Moving Average),” J. Data Anal., vol. 1, no. 1, pp. 1–11, 2018, doi: 10.24815/jda.v1i1.11847.

[8] M. Davi and E. Winarko, “Rancang Bangun Aplikasi Peramalan Jumlah Penumpang Menggunakan Long Short-Term Memory (LSTM),” Infotekmesin, vol. 14, no. 2, pp. 303–310, 2023, doi: 10.35970/infotekmesin.v14i2.1911.

[9] A. Boateng, C. Anum Adams, and E. Kofi Akowuah, “Estimating Passenger Demand Using Machine Learning Models: A Systematic Review,” E3S Web Conf., vol. 418, 2023, doi: 10.1051/e3sconf/202341803002.

[10] B. Jiang, G. Ding, J. Fu, J. Zhang, and Y. Zhang, “An Overview of Demand Analysis and Forecasting Algorithms for the Flow of Checked Baggage among Departing Passengers,” Algorithms, vol. 17, no. 5, pp. 1–16, 2024, doi: 10.3390/a17050173.

[11] V. Singh, S. K. Sahana, and V. Bhattacharjee, “A novel CNN-GRU-LSTM based deep learning model for accurate traffic prediction,” Discov. Comput., vol. 28, no. 1, 2025, doi: 10.1007/s10791-025-09526-0.

[12] A. K. Aggarwal, “Learning Texture Features from GLCM for Classification of Brain Tumor MRI Images using Random Forest Classifier,” Wseas Trans. Signal Process., vol. 18, no. May, pp. 60–63, 2022, doi: 10.37394/232014.2022.18.8.

[13] W. H. Bangyal et al., “Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches,” Comput. Math. Methods Med., vol. 2021, 2021, doi: 10.1155/2021/5514220.

[14] A. S. B. Karno, “Analisis Data Time Series Menggunakan LSTM (Long Short Term Memory) Dan ARIMA (Autoregressive Integrated Moving Average) Dalam Bahasa Python,” Ultim. InfoSys J. Ilmu Sist. Inf., vol. XI, no. 1, pp. 1–7, 2020.

[15] N. N. Pandika Pinata, I. M. Sukarsa, and N. K. Dwi Rusjayanthi, “Prediksi Kecelakaan Lalu Lintas di Bali dengan XGBoost pada Python,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 8, no. 3, p. 188, 2020, doi: 10.24843/jim.2020.v08.i03.p04.

[16] A. Lisanthoni, F. I. Sari, E. L. Gunawan, and C. A. Adhigiadany, “Model Prediksi Kepadatan Lalu Lintas: Perbandingan Algoritma Random Forest dan XGBoost,” Pros. Semin. Nas. Sains Data, vol. 3, no. 1, pp. 296–303, 2023, doi: 10.33005/senada.v3i1.126.

Downloads

Published

2025-08-09

How to Cite

[1]
D. Yugo Prasojo and K. Muludi, “Passenger Density Prediction at the Airport Using LSTM and SARIMA: A Case Study at Radin Inten Airport, Lampung”, JAIC, vol. 9, no. 4, pp. 1955–1963, Aug. 2025.

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.