Implementation of Convolutional Neural Network in Image-Based Waste Classification
DOI:
https://doi.org/10.30871/jaic.v9i4.9829Keywords:
Convolutional Neural Netwrok, Image Classification, WasteAbstract
The increasingly complex issue of waste management, particularly in the sorting process, demands efficient and accurate technology-based solution. This study aims to implement the Convolutional Neural Network (CNN) method for image-based waste classification, focusing on two classes paper and plastic. The dataset used consists of 2000 images, with an 80% proportion for training and 20% for testing. This study tested four scenarios combining image augmentation and classification methods, namely threshold and one-hot encoding, and evaluated model performance using accuracy, precision, recall, and F1-score metrics. The best results were obtained in the scenario using image augmentation with the one-hot encoding classification method, with an accuracy of 89%, precision of 88.5%, recall of 89%, and F1-score of 88.5%. These findings indicate that implementation of CNN can enhance the effectiveness of image-based waste classification and support recycling efforts through a smarter and more automated sorting system.
Downloads
References
[1] D. Deslanda, P. Mukti, M. Kaisar, N. D. Lestari, and S. Salma, “Sosialisasi Pengolahan Sampah Organik dan Anorganik Menjadi Produk Kreatif,” Madani J. Ilm. Multidisipline, vol. 1, no. 11, pp. 745–749, 2023.
[2] World Bank Group, “Solid Waste Management,” World Bank Group. Accessed: Jun. 13, 2025. [Online]. Available: https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management
[3] Kementerian Lingkungan Hidup dan Kehutanan, “Capaian Kinerja Pengelolaan Sampah Indonesia,” Kementerian Lingkungan Hidup dan Kehutanan. Accessed: Jun. 13, 2025. [Online]. Available: https://sipsn.menlhk.go.id/sipsn/
[4] H. K. N. Sumartiningtyas, “Indonesia Hasilkan 64 Juta Ton Sampah, Bisakah Kapasitas Pengelolaan Tercapai Tahun 2025?,” Kompas.com. Accessed: Jun. 13, 2025. [Online]. Available: https://www.kompas.com/sains/read/2020/12/18/070200023/indonesia-hasilkan-64-juta-ton-sampah-bisakah-kapasitas-pengelolaan?page=all
[5] D. Waluyo, “Masalah Kita Adalah Sampah,” Indonesia.Go.Id. Accessed: Jun. 13, 2025. [Online]. Available: https://www.indonesia.go.id/kategori/editorial/7714/masalah-kita-adalah-sampah.
[6] J. Yan, “Application of CNN in computer vision,” Appl. Comput. Eng., vol. 30, no. 1, pp. 104–110, 2024, doi: 10.54254/2755-2721/30/20230081.
[7] O. D. S. Sunanto and P. H. Utomo, “Implementasi Deep Learning Dengan Convolutional Neural Network Untuk Klasifikasi Gambar Sampah Organik Dan Anorganik,” Pattimura Proceeding Conf. Sci. Technol., vol. 1, no. 2, pp. 335–340, 2022, [Online]. Available: https://jurnal.unej.ac.id/index.php/prosiding/article/view/33527
[8] A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 45–51, 2020, doi: 10.30871/jaic.v4i1.2017.
[9] P. N. Dacipta and R. E. Putra, “Sistem Klasifikasi Limbah Menggunakan Metode Convolutional Neural Network (CNN) Pada Webservice Berbasis Framework Flask,” J. Informatics Comput. Sci., vol. 3, no. 04, pp. 394–402, 2022, doi: 10.26740/jinacs.v3n04.p394-402.
[10] Yujie He, Qinyue Gu, and Maguo Shi, “Trash Classification Using Convolutional Neural Networks Project Category: Computer Vision,” CS230 Deep Learn., 2020.
[11] E. Sutanty and D. Kusuma Astuti, “DECODE: Jurnal Pendidikan Teknologi Informasi Penerapan Model Arsitektur VGG16 Untuk Klasifikasi Jenis Sampah,” vol. 3, no. 2, pp. 407–419, 2023.
[12] R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 2, pp. 233–236, 2023, doi: 10.23960/jitet.v11i2.3034.
[13] D. Mishkin, N. Sergievskiy, and J. Matas, “Systematic evaluation of CNN advances on the ImageNet,” 2016, doi: 10.1016/j.cviu.2017.05.007.
[14] A.-M. Al-Mamun, R. Hossain, M. M. M. Sharmin, E. Kabir, and M. A. Iqbal, “Garbage classification using convolutional neural networks (CNNs),” Mater. Sci. Eng. Int. J., vol. 7, no. 3, pp. 140–144, 2023, doi: 10.15406/mseij.2023.07.00217.
[15] J. Brownlee, “A Gentle Introduction to Threshold-Moving for Imbalanced Classification,” Machine Learning Mastery. Accessed: Jun. 13, 2025. [Online]. Available: https://machinelearningmastery.com/threshold-moving-for-imbalanced-classification/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Adila Qurrota A'yun, Suhartono Suhartono, Tri Mukti Lestari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








