Implementation of Convolutional Neural Network in Image-Based Waste Classification

Authors

  • Adila Qurrota A'yun Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Suhartono Suhartono Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Tri Mukti Lestari Universitas Islam Negeri Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.30871/jaic.v9i4.9829

Keywords:

Convolutional Neural Netwrok, Image Classification, Waste

Abstract

The increasingly complex issue of waste management, particularly in the sorting process, demands efficient and accurate technology-based solution. This study aims to implement the Convolutional Neural Network (CNN) method for image-based waste classification, focusing on two classes paper and plastic. The dataset used consists of 2000 images, with an 80% proportion for training and 20% for testing. This study tested four scenarios combining image augmentation and classification methods, namely threshold and one-hot encoding, and evaluated model performance using accuracy, precision, recall, and F1-score metrics. The best results were obtained in the scenario using image augmentation with the one-hot encoding classification method, with an accuracy of 89%, precision of 88.5%, recall of 89%, and F1-score of 88.5%. These findings indicate that implementation of CNN can enhance the effectiveness of image-based waste classification and support recycling efforts through a smarter and more automated sorting system.

Downloads

Download data is not yet available.

References

[1] D. Deslanda, P. Mukti, M. Kaisar, N. D. Lestari, and S. Salma, “Sosialisasi Pengolahan Sampah Organik dan Anorganik Menjadi Produk Kreatif,” Madani J. Ilm. Multidisipline, vol. 1, no. 11, pp. 745–749, 2023.

[2] World Bank Group, “Solid Waste Management,” World Bank Group. Accessed: Jun. 13, 2025. [Online]. Available: https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management

[3] Kementerian Lingkungan Hidup dan Kehutanan, “Capaian Kinerja Pengelolaan Sampah Indonesia,” Kementerian Lingkungan Hidup dan Kehutanan. Accessed: Jun. 13, 2025. [Online]. Available: https://sipsn.menlhk.go.id/sipsn/

[4] H. K. N. Sumartiningtyas, “Indonesia Hasilkan 64 Juta Ton Sampah, Bisakah Kapasitas Pengelolaan Tercapai Tahun 2025?,” Kompas.com. Accessed: Jun. 13, 2025. [Online]. Available: https://www.kompas.com/sains/read/2020/12/18/070200023/indonesia-hasilkan-64-juta-ton-sampah-bisakah-kapasitas-pengelolaan?page=all

[5] D. Waluyo, “Masalah Kita Adalah Sampah,” Indonesia.Go.Id. Accessed: Jun. 13, 2025. [Online]. Available: https://www.indonesia.go.id/kategori/editorial/7714/masalah-kita-adalah-sampah.

[6] J. Yan, “Application of CNN in computer vision,” Appl. Comput. Eng., vol. 30, no. 1, pp. 104–110, 2024, doi: 10.54254/2755-2721/30/20230081.

[7] O. D. S. Sunanto and P. H. Utomo, “Implementasi Deep Learning Dengan Convolutional Neural Network Untuk Klasifikasi Gambar Sampah Organik Dan Anorganik,” Pattimura Proceeding Conf. Sci. Technol., vol. 1, no. 2, pp. 335–340, 2022, [Online]. Available: https://jurnal.unej.ac.id/index.php/prosiding/article/view/33527

[8] A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 45–51, 2020, doi: 10.30871/jaic.v4i1.2017.

[9] P. N. Dacipta and R. E. Putra, “Sistem Klasifikasi Limbah Menggunakan Metode Convolutional Neural Network (CNN) Pada Webservice Berbasis Framework Flask,” J. Informatics Comput. Sci., vol. 3, no. 04, pp. 394–402, 2022, doi: 10.26740/jinacs.v3n04.p394-402.

[10] Yujie He, Qinyue Gu, and Maguo Shi, “Trash Classification Using Convolutional Neural Networks Project Category: Computer Vision,” CS230 Deep Learn., 2020.

[11] E. Sutanty and D. Kusuma Astuti, “DECODE: Jurnal Pendidikan Teknologi Informasi Penerapan Model Arsitektur VGG16 Untuk Klasifikasi Jenis Sampah,” vol. 3, no. 2, pp. 407–419, 2023.

[12] R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 2, pp. 233–236, 2023, doi: 10.23960/jitet.v11i2.3034.

[13] D. Mishkin, N. Sergievskiy, and J. Matas, “Systematic evaluation of CNN advances on the ImageNet,” 2016, doi: 10.1016/j.cviu.2017.05.007.

[14] A.-M. Al-Mamun, R. Hossain, M. M. M. Sharmin, E. Kabir, and M. A. Iqbal, “Garbage classification using convolutional neural networks (CNNs),” Mater. Sci. Eng. Int. J., vol. 7, no. 3, pp. 140–144, 2023, doi: 10.15406/mseij.2023.07.00217.

[15] J. Brownlee, “A Gentle Introduction to Threshold-Moving for Imbalanced Classification,” Machine Learning Mastery. Accessed: Jun. 13, 2025. [Online]. Available: https://machinelearningmastery.com/threshold-moving-for-imbalanced-classification/

Downloads

Published

2025-08-08

How to Cite

[1]
A. Qurrota A'yun, S. Suhartono, and T. M. Lestari, “Implementation of Convolutional Neural Network in Image-Based Waste Classification”, JAIC, vol. 9, no. 4, pp. 1778–1784, Aug. 2025.

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.